Plot it to Understand it Better:

Creating Visualizations in R to Support Students in Interpreting Results of
Machine Learning Algorithms

— oveiew Methodology

Objective: Making interpretation of machine learning Step 1: Characteristics of | Step 2: Detailed view of | Step 3: In-depth analysis
algorithm results easier for university students individual classes misclassified cases of the model itself
eStudents cannot get familiar with the methods before the
| " eTableplots hide the details | eParallel coordinate plots eBesides the general plots,
lecture is over and are efficient at are efficient in highlighting | special plots are created for
eParametrization is far from trivial for the first time % emphasizing the common groups if they exist Random Forest (RF) and
characteristics of record Naive Bayes (NB) models
eResults are hard to interpret without prior experience X eroups oVariables are ordered based
‘ . o . on their importance in the eRandom forest results are
Suggested approach: tailored visualizations in R eVariables are ordered based| model represented with heatmaps
for classification methods on their importance in the
i model eOne plot for each eNaive Bayes are
more enthusiastic students © eRecords are ordered by the conditional density plots
target variable eOverlapping is solved with and mosaic plots
line width

Use Case Data Set: Survival on the Titanic

Features:
The (cleaned) Titanic data set contains nine eSurvived — Target variable indicating whether the passenger survived the tragedy
features of individuals (passengers and crew) ePclass — Indicator whether the passenger travelled on first, second or third class
who were on board at the tragic voyage. The e CabinNumber and CabinSign — cabin information of the passengers, highly sparse
classification exercise is predicting of their eEmbarked — Port of embarkation (Cherbourg, Queenstown, Southampton)
survival. eFare — Passenger fare e Age — Age of the passenger in years
eParch — Number of parents and children on-board eSibSp — Number of siblings and spouses on-board
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in age - Misclassified cases are much more balanced here than
'Misclassified cases are almost always false negatives they in case of the RF

Most of misclassified
cases are men with a
low fare. Number of
relatives on-board

are irrelevant.
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Prediction results — Categorized correctly to: No ~ Categorized correctly to: Yes - Miscategorized: should be Yes and predicted No Prediction results — Categorized correctly to: No  Categorized correctly to: Yes -~ Miscategorized: should be Yes and predicted No
Causal relationship with cabin details? The NB model seem.s.mo.re con.servatl\./e than the RF: the
independency condition is obviously violated
RF: cells are colored Age SibSp Fare CabinNumber
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Conclusions References Contact Information

The poster idea is originated from the thesis work of Adam Bereczki: For further information, contact Agnes Salanki
e The two general plots can help even in the exploratory phase “Visualization of Machine Learning Algorithms” Email: salanki.agnes@gmail.com E BRU ""LS m%

Use

Cool related visualization projects: [1] Welling, Soeren H., et al. "Forest Floor - 2 @ 17
Visualizations of Random Forests." arXiv preprint arXiv:1605.09196 (2016).
& [2] ML Demos: http://mldemos.b4silio.com/download.html

e Painfully missing interactivity, e.g. linked highlighting (Advisors: Agnes Salanki & Gabor Szarnyas)

e Detailed view is only informative until ~10,000 rows
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