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Introduction

Multivariate ordinal regression models build up on cumulative link models which are amongst the most
popular models for univariate ordinal data analysis. In cumulative link models the observed ordinal
outcome Y is assumed to be a coarser (categorized) version of a latent continuous variable Ỹ . If multiple
observations on the same subject are observed, univariate cumulative link models can be extended to
a multivariate framework. These repeated measurements for each subject may take place either at the
same time yielding a cross-sectional multivariate ordinal regression model or at di�erent points in time
yielding a panel multivariate ordinal regression model (Bhat et al., 2010).

Model Class

Model Formulation

Let us suppose to have J repeated measurements on n di�erent subjects i, where each repeated
ordinal observation (indexed by j ∈ J) is denoted by Yij . Each observable categorical outcome

Yij and the unobservable latent variable Ỹij are connected by:

Yij = rij ⇔ θj,rij−1 < Ỹij ≤ θj,rij , rij ∈ {1, . . . ,Kj},

where rij is a category out of Kj ordered categories and θj is a vector of suitable threshold
parameters for outcome j with the following restriction: −∞ ≡ θj,0 < θj,1 < · · · < θj,Kj ≡ ∞.
The number of threshold categories Kj as well as the threshold parameters themselves are
allowed to vary across outcome dimensions j ∈ J in order to account for di�erences in the
repeated measurements. Given an n× p matrix Xj of covariates for each j ∈ J , where each xij
is a p-dimensional vector (i-th row ofXj) for subject i and repeated measurement j, the following

linear model for the relationship between Ỹij and the vector of covariates xij is assumed:

Ỹij = βj0 + x
>
ijβj + εij , εi = (εi1, εi2, . . . , εiJ)

> ∼ FJ(0,Σ), (1)

where

- βj0 is an intercept term corresponding to outcome j,

- βj = (βj1, . . . , βjp)
> is a vector of regression coe�cients corresponding to outcome j,

- εij is an error term with mean zero and distributed according to a J-dimensional distri-
bution function FJ .

Identi�ability: As the absolute scale and the absolute location are not identi�able in ordinal models
further restrictions on the parameter set need to be imposed. Assuming a full covariance matrix Σ
with diagonal elements σ2

j , only the quantities βj/σj and (θj,rij −βj0)/σj are identi�able in model (1).
The scale can be �xed either by restricting the full variance-covariance matrix Σ to be a correlation
matrix R or by �xing two threshold parameters. For the location either the intercept βj0 or one
threshold parameter has to be �xed to some value. Therefore, in order to obtain an identi�able model
the following typical constraints on the parameters can be imposed for all j ∈ J :

- Fixing the intercept βj0 (e.g., to zero), using �exible thresholds θj and �xing σj (e.g., to unity).

- Leaving the intercept βj0 unrestricted, �xing one threshold parameter (e.g., θj,1 = 0) and �xing
σj (e.g., to unity).

- Leaving the intercept βj0 unrestricted, �xing two threshold parameters (e.g., θj,1 = 0 and θj,2 = 1)
and leaving σj unrestricted.

- Fixing the intercept βj0 (e.g., to zero), �xing one threshold parameter (e.g., θj,1 = 0) and leaving
σj unrestricted for all j ∈ J .

Di�erent error structures

error.structure Cov. structure
(Σ)

Corr. structure
(R)

Factor
dependent

Covariate
dependent

corGeneral(� 1) X
corGeneral(� f) X X
covGeneral(� 1) X
covGeneral(� f) X X
corEqui(� 1) X
corEqui(� X) X X
corAR1(� 1) X
corAR1(� X) X X

Table 1: Overview of the di�erent error structures.

Estimation

For a given parameter vector Γ which contains the threshold parameters Θ, the regression coe�cients
B and the variance-covariance (correlation) parameters Σ that have to be estimated, the likelihood
has the following form:

L(Γ) =
n∏
i=1

P(Yi1 = ri1, Yi2 = ri2, . . . , YiJ = riJ)
wi

=
n∏
i=1


θ1,ri1−βj0−x>ijβj∫

θ1,ri1−1−βj0−x>ijβj

· · ·

θJi,riJi
−βj0−x>ijβj∫

θJi,riJi
−1−βj0−x>ijβj

fJ(vi1, . . . , viJ ;R)dvi1 . . . dviJ


wi

where fq denotes the density of q-dimensional distribution Fq. In order to estimate the model pa-
rameters we approximate full likelihood is by a composite likelihood, where a pseudolikelihood is
constructed from bivariate marginal distributions F2 (Pagui et al., 2015). Using transformed upper
Uij = θj,rij − βj0 − x>i βj and Lij = θj,rij−1 − βj0 − x>i βj the lower integration bounds, the pairwise
log-likelihood function is obtained by

c`PL(Γ) =
n∑
i=1

J−1∑
k=1

J∑
l=k+1

wi log (P(Yik = rik, Yil = ril))

=

n∑
i=1

J−1∑
k=1

J∑
l=k+1

wi log

 Uik∫
Lik

Uil∫
Lil

f2(vik, vil|ρkl)dvikdvil

 (2)

The maximum composite likelihood estimates Γ̂c` are obtained by direct maximization of the composite
likelihood given in using general purpose optimizers of the R package optimx. Standard errors are
computed by means of the Godambe information matrix in order the standard errors to quantify the
uncertainty of the maximum composite likelihood estimates (Varin, 2008).

Implementation

Multivariate ordinal regression models in the R packageMultOrd are �tted using the function multord.
The usage of the function multord is explained by means of a short credit rating example based on the
following dataset data:

Credit ratings data

firmID raterID rating X1 X2 X3 f

1 254 Moody's Aaa 0.453214 2.394723 0.862093 manufacturing

2 259 S&P BBB 0.645985 1.928982 1.229113 retail trade
...

...
...

...
...

...
...

...

2999 537 S&P AA 0.583231 2.598759 0.882301 mining

3000 537 Fitch AA 0.583231 2.598759 0.882301 mining

Let us assume that we have a dataset of corporate credit ratings of di�erent �rms from di�erent raters
at the same point in time or from the same rater at di�erent points in time. Each row of data

corresponds to a single credit rating observations from one rater of a �rm together with its covariates
X1, X2, X3 and f. A character vector of length two index speci�es the subject index i (firmID) and
the repeated measurement index j (raterID). Let us further assume that we have three di�erent raters
(response.names = c("S\&P", "Moody's", "Fitch")) with di�erent categories1. If the categories
di�er across repeated measurements one needs to specify the response.levels explicitly by:

response.levels <- list(c("AAA", "AA", "A", "BBB", "BB","B", "CCC\C"),

c("Aaa", "Aa", "A", "Baa", "Ba", "B", "Caa\C", "D"),

c("AAA", "AA", "A", "BBB", "BB", "B", "CCC\C"))

For a given repeated measurement index raterID and covariates X1, X2 and X3 the formula in a model
without intercept has the following form:

formula1 <- rating ~ 0 + X1 + X2 + X3

In analogy, in a model with intercept we have:

formula2 <- rating ~ X1 + X2 + X3, or formula3 <- rating ~ 1 + X1 + X2 + X3

Two di�erent link functions can be used, either the probit link (link = "probit"), or the logit link
(link = "logit"). Furthermore, constraints on the coe�cients can be imposed in the following way:

Constraints on regression coe�cients

coef.constraints <- cbind(c(1, 2, 3),

c(1, 2, 1),

c(1, NA, 1))

coef.values <- cbind(c(NA, NA, NA),

c(NA, NA, NA),

c(2, 0, 2))

gives the following model:

Ỹi1 = β10 + β11xi1 + β12xi2 + 2xi3,

Ỹi2 = β20 + β21xi1 + β22xi2,

Ỹi3 = β30 + β31xi1 + β12xi2 + 2xi3.

In addition, constraints on the threshold coe�cients can be imposed by:

Constraints on threshold coe�cients

threshold.constraints <- c(1, 2, 1)

threshold.values <- list(c(-3, NA, NA, NA, NA, NA),

c(-3.5, NA, NA, NA, NA, NA, NA),

c(-3, NA, NA, NA, NA, NA))

gives

θ1 = θ3,

θ11 = −3 < θ12 < θ13 < θ14 < θ15 < θ16,

θ21 = −3.5 < θ22 < θ23 < θ24 < θ25 < θ26 < θ27.

A multivariate ordinal regression model for the credit rating example is then �tted by the call:

Function call

multord(formula = formula2, data = data, index = c("firmID", "rater"),

response.names = c("S&P", "Moody's", "Fitch"),

response.levels = response.levels, link = "probit",

error.structure = corGeneral(~f), coef.constraints = coef.constraints,

coef.values = coef.values, threshold.constraints = threshold.constraints,

threshold.values = threshold.values, se = TRUE, start.values = NULL,

solver = "newuoa", PL.lag = NULL)

In addition, several methods like summary, print, coef, threshold, sigma and predict are imple-
mented for the class 'multord'.

1S&P and Fitch: AAA, AA, A, BBB, BB, B, CCC\C. Moody's: Aaa, Aa, A, Baa, Ba, B, Caa\C, D

Conclusion

• R-package MultOrd o�ers a �exible framework for multivariate ordinal regression models.

• Di�erent error structures allow for cross-sectional and panel models.

• Constraints on regression coe�cients as well as threshold parameters can be imposed.
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