
alternatives to the akima package — bivand and gebhardt

Alternatives to the akima package

Roger Bivand1 and Albrecht Gebhardt2

1. Norwegian School of Economics, 5045 Bergen, Norway

2. Alpen-Adria-Universität, Klagenfurt, Austria

The akima package has been widely used as a
convenient way of interpolating 2D points to
create a surface, but it has a non-commercial ACM
license; we show how to use alternatives instead.

akima: the problem
• Many users and packages wish to display an image of a surface

based on interpolation from possibly irregularly scattered points.

• Probably because an implementation of Akima’s interpolation

function (Akima, 1978b) was provided in S-Plus, developers and

users familiar with it took up Albrecht Gebhardt’s early port to R

(on CRAN since 1998).

• Users of S-Plus were shielded from the ACM non-commercial use

license because such issues were handled by their software provider.

• Users of the R akima (Akima and Gebhardt, 2017) package do

however face the license conditions themselves, but have largely

regarded the package as a useful adjunct to visualization.

The scale of the problem
• A survey in mid-February 2017 indicated that akima functions

affected by the ACM license conditions were used by 38 CRAN, 2

Bioconductor and 21 github-only packages (github searched using

Google with akima description site:github.com, hint by Edzer

Pebesma); very few required user acceptance of the ACM license.

• Of these, 43 used akima::interp(..., linear = TRUE, ...) with

varying settings of the duplicated= argument, and 12 used

akima::interp(..., linear = FALSE, ...) permitting

extrapolation.

• The remaining affected akima functions were used by 13

packages, where some packages use more than one akima

function.

• While we are not addressing the equivalent licensing issues of the

tripack package for trianguation of irregularly spaced data,

akima and tripack are closely related.

2D interpolation and approximation
• Interpolation for irregular scattered data uses ACM algorithm 526

from 1978 (Akima, 1978b,a), argument linear = TRUE, and ACM

algorithm 761 from 1996 (Akima, 1996), linear = FALSE; current

akima uses a revised version of the ACM 761 code by Renka and

Brown (1998) — Renka’s triangulation is more efficient

(O(n log(n)), Renka, 1998) while Akima’s triangulation was O(n2).

• A discussion of many of the issues involved in smoothing and

interpolation is provided by Ripley (1981, pp. 38–44). A

continuous function is generated to reproduce the z-values at the

given locations (xi, yi) and to ensure a certain degree of

smoothness of the interpolating function.

• The piecewise linear interpolation with linear = TRUE is not a

spline interpolator; it is a linear function per triangle, and the first

derivatives are not continuous at the borders of the triangle (see

Figure 1). This approach, barycentric interpolation, has been

known for almost 200 years (Möbius, 1827).

piecewise linear

 0.04 

 0.06 
 0.08 

 0.1 

 0.12 
 0.14 

 0.16 
 0.18 

 0.18 

 0.2 
 0.22 

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

spline

 0.05 

 0.05 

 0.1 

 0.1 

 0.15 

 0.15 

 0.2 

 0.2 

 0.25 
 0.3 

 0.35 
 0.4 ●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

Figure 1: Piecewise linear (left, linear = TRUE) and irregular Akima

spline interpolation (right, linear = FALSE); note the triangular

surfaces and linear isolines for the piecewise linear case.

Alternatives and results
• The new interp CRAN package is a re-implementation of Akima’s

algorithms not using the questioned Fortran ACM code, nor using

Renka’s TRIPACK code. It uses new sweep-hull C++ triangulation

code (O(n log(n)), Sinclair, 2016) with RcppEigen glue (Bates

and Eddelbuettel, 2013), and incidentally will also be a drop-in

replacement for much of tripack (Renka and Gebhardt, 2016).

• For the linear = TRUE piecewise linear interpolator, interp can

replace akima; for linear = FALSE and extrapolation, you may use

the MBA approximation, or watch this space for an interp

implementation (under development).

akima::interp
linear

interp::interp
linear Differences Differences

close−up

● ●

● ●
●

Figure 2: Interpolation output on a 40x40 grid for akima and interp

linear = TRUE piecewise linear interpolators; the fourth panel shows

that the difference in interpolated surface values is caused by the

different choice of diagonal (tripack: green, sweep-hull: red).

• The MBA package (Finley et al., 2017) uses an implementation

by Øyvind Hjelle (2001) of multilevel B-splines as described by Lee

et al. (1997). The mba.surf function is used to fit a multilevel

approximate B-spline model from the scattered input points, and

then to predict to grid points.

• We can use akima::interpp() and MBA::mba.points() to

demonstrate the difference between interpolation and

approximation.

Table 1: Interpolation and approximation: distributions of differences

between input z values and Akima spline, Akima piecewise linear,

Akima spline with extrapolation and multivariate B-spline point output.

Min. 1st Qu. Median 3rd Qu. Max. NA’s

spline -3.735E-12 -8.195E-13 1.592E-14 6.496E-13 3.856E-12 6

linear -5.196E-12 -8.262E-13 -3.959E-14 6.980E-13 3.764E-11 6

extrap -3.735E-12 -6.436E-13 5.168E-14 6.451E-13 3.856E-12 0

mba -9.888E-04 -1.847E-08 -6.318E-09 2.267E-09 9.318E-04 0

• akima::interp() is an interpolator, with possible use for

extrapolation when linear = FALSE, where the fitted surface

passes within machine precision of the z values at the input points,

apart from six NAs on convex hull points.

• In contrast, the multilevel B-spline implementation only

approximates the z values at the input points. However, multilevel

B-spline approximation scales well as the number of points

increases, because it does not need to triangulate the input points,

and accepts gridded input.


