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Abstract Issue #sentences #word per sentences #sd word #char per sentence #char per word

Central Banks, among other tasks, provide a relevant amount of information for Institutions and 2010 1 518 313 14.69 182 .41 5 83
market operators. Indeed central banks employ a multiplicity of communication channels to drive market expectations. )
In this paper we present some methodologies aimed to quantify the information content of official communications and
we present their application to the semi-annual publication of the Financial stability report. While these methodologies are 2012_1 295 32.97 16.27 191.99 5.82
guite developed for the English and other highly spoken languages in the world, they are still in their experimental phase for
the Italian language.

Here the goal is twofold: on one hand we provide a transparent numerical framework to consider sub-unit of an official
Central Bank report written in Italian. Moreover it is proposed an analytical tool to gauge the impact of an official document on the public. 20132 317 31.85 15.46 185.6 5.83
In the context of reports released by the Bank of Italy, we show how this framework can be employed to numerically characterize and

2011_1 428 32.4 15.29 190 5.86

2012_2 364 33.18 16.06 192.01 5.78

2013_1 288 32.21 15.56 187.26 5.81

.. . 2014 1 271 31.52 151 181.26 5.75
extract their information content.
We deem quite relevant a quantitative evaluation of the impact of these reports in 2014_2 379 34.21 16.64 195.4 5.71
increasing the central bank transparency with the goal of enhancing the effectiveness of its institutional action. 2015 1 266 34.32 14.98 195.94 571
JEL CIGSSIfiCGﬁOHZ C83, E58, E61 2015_2 267 32.21 14.92 183.88 5.71
Keywords: Text Mining, Semantic Analysis, Pointwise Mutual Information, Web search. 2016_1 297 32.87 14.94 187.57 5.71
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A global diagnostic tool for a corpus of homogeneous documents is the heatmap.
A heatmap provides a picture showing the hottest word (more used) for different documents.

Color Key
Central Institutions express their position through documents as well as quantitative figures. l Word usage heatmap
The web provides an enormous warehouse of information. Around 4/5 of this info is of textual nature. 0 o a4
Harnessing textual information requires a theoretical approach. Here we adopted the bag of words assumption. Weighted word frequency
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The Readability definition The Formality definition

Formality of a statement/text is defined as the amount of expression that is immutable irrespective to changes of context.
Examples come from the consideration of spatial-temporal context.
"Today Tom is there" vs "The 5th of October 2016, Tom is at the Bank of Italy”. Formality is computed according to the following

Readability assessment provides a measure of the effort required by a reader to understand a text.
Readability is a shallow feature of the text and can be extracted by simply counting words and characters.
There are at least six different definitions of readability. We have adopted the Automated Readability Index ARI which is

ng—n
aimed at the English language F=50- (% + 1)
ARI = 4.71 - ( Nenar ) +0.5 - (M) —21.43 where: ns is the total number of nouns, adjectives, prepositions
. _ _ words Nsentences and articles, and n, is the total number of pronouns, adverbs,
This index, available in the qdap package, rewards shorter words and sentences. verbs and interjections. The normalizing constant is given by N = Y.(f + ¢ + conjunctions)
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Latent Semantic Analysis Latent Semantic Analysis applications

After completing the task of building a corpus of documents, it is possible to start the semantic analysis. Words most highly similar with ‘crisi’
Latent Semantic Analysis (LSA) is a methodology for extracting and representing the contextual-usage of words (co-occurrence) for determining the
similarity of meaning of sentences by analysis of large text corpora. 0 0.1 0.2
The input for the LSA algorithm is a text document matrix: 03 -0.2 -0.1
' paesi

docy; doc, -+ docy
word; /W11 Wi2 = Wip
word, [ W21 Wiz 0 Wzp

consolidamento

TDM = 0.2

) gquiadro
word, \Wn1 Wn2 *° Wpnp

each w; ; is a weighted value of the number of occurrences of the word i in document j. Crisi

The TDM matrix is decomposed with the Singular Value Decomposition procedure:

TDM =U-%-Vt 02
Here the trick is that U and V are orthonormal matrices. Orthogonal basis implies the ability to decompose an effect into separate, non-interacting parts
that simply add up to form the whole effect. This is a generalization of the Factor Analysis.

_‘%% condizioni
Semantic Orientation from PMI -0.1

0

AEhito

We can infer semantic orientation from semantic association. The semantic orientation of a given word/sentence is calculated from the strength of its
association with a set of positive words, minus the strength of its association with a set of negative words:

SO(sent) = z (A(sent,pos_wd))— z (A(sent,neg_wd))

pos_wd neg_wd

Each one of the sums is approximated as Zpos_wd(A(sent,pos_Wd)) = PMI(sent; pos_.wd) and PMI(x;y) = log

0.2

p(x,y)
p(x)p(y)

Semantic Orientation in 2010_1

Antinomy stabilita/instabilita Antinomy espansione/crisi Antinomy solidita/vulnerabilita _
For further reading

30=-050

S0=0.86 ©

T F. Heylighen and J. Dewaele.
Variation on the Contextuality of Language: an Empirical Measure.

1.5

g o o Foundation of Science, 2002.
2 o L il (TN
5 R. Senter and E.A. Smith.
T
o | I i i [ | I = . . ‘ | Wi ‘ | (181N Automated Readability Index.
E - l ‘ ” ‘ l ‘ “ - _ I ‘H H, ! it I H w ‘ ‘ Aerospace Medical Research Laboratory, 2010.
[7] o ] o .
® ' ' D. Lucca and F. Trebbi.
e | 2 0 Measuring Central Bank Communication: an Automated Approach with Applications to FOMC Statements.
' = NBER working paper, 2011.
[ [ [ [ [ I T B [ [ [ [ [ [ [ [ [ [ [ [
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

statements statements statements



