H₂O.di

Company Overview

Company

- Team: 35. Founded in 2012, Mountain View, CA
- Stanford Math & Systems Engineers

Product

- Open Source Leader in Machine & Deep learning
- Ease of Use and Smarter Applications
- R, Python, Spark & Hadoop Interfaces
- Expanding Predictions to Mass Analyst markets

Executive Team

DataStax

Cliff Click
CTO & Co-founder

Sun, Java Hotspot

Tom Kraljevic
VP of Engineering

Abrizio, Intel

Arno Candel
Chief Architect

Physicist, Deep Learning

Board of Directors

Jishnu Bhattacharjee // Nexus Ventures
Ash Bhardwaj // Flextronics

cientific Advisory Council

Trevor Hastie Stephen Boyd Rob Tibshirani

H2O.ai Team

Dr. Trevor Hastie

- PhD in Statistics, Stanford University
- John A. Overdeck Professor of Mathematics, Stanford University
- Co-author, The Elements of Statistical Learning: Prediction, Inference and Data Mining
- Co-author with John Chambers, Statistical Models in S
- Co-author, Generalized Additive Models
- 108,404 citations (via Google Scholar)

Dr. Rob Tibshirani

- PhD in Statistics, Stanford University
- Professor of Statistics and Health Research and Policy, Stanford University
- COPPS Presidents' Award recipient
- Co-author, The Elements of Statistical Learning: Prediction, Inference and Data Mining
- Author, Regression Shrinkage and Selection via the Lasso
- Co-author, An Introduction to the Bootstrap

Dr. Stephen Boyd

- PhD in Electrical Engineering and Computer Science, UC Berkeley
- Professor of Electrical Engineering and Computer Science, Stanford University
- Co-author, Convex Optimization
- Co-author, Linear Matrix Inequalities in System and Control Theory
- Co-author, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

Accuracy with Speed and Scale

Accuracy with Speed and Scale

Algorithms on H2O

Supervised Learning

Statistical Analysis

Ensembles

Deep Neural Networks

- Generalized Linear Models : Binomial, Gaussian, Gamma, Poisson and Tweedie
- Cox Proportional Hazards Models
- Naïve Bayes
- Distributed Random Forest : Classification or regression models
- Gradient Boosting Machine: Produces an ensemble of decision trees with increasing refined approximations
- Deep learning: Create multi-layer feed forward neural networks starting with an input layer followed by multiple layers of nonlinear transformations

Algorithms on H2O

Unsupervised Learning

Clustering

 K-means: Partitions observations into k clusters/ groups of the same spatial size

Dimensionality Reduction

 Principal Component Analysis: Linearly transforms correlated variables to independent components

Anomaly Detection

 Autoencoders: Find outliers using a nonlinear dimensionality reduction using deep learning

Reading Data from HDFS into H2O with R

Reading Data from HDFS into H2O with R

Reading Data from HDFS into H2O with R

R Script Starting H2O GLM

R Script Retrieving H2O GLM Result

H2O Billion Row Machine Learning BenchmarkGLM Logistic Regression

Compute Hardware: AWS EC2 c3.2xlarge - 8 cores and 15 GB per node, 1 GbE interconnect

Airline Dataset 1987-2013, 42 GB CSV, 1 billion rows, 12 input columns, 1 outcome column 9 numerical features, 3 categorical features with cardinalities 30, 376 and 380

Demo Time!

Community

DataRobot