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Part |: approximating the likelihood
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Example 1: a two-level model

Have binary observations y; which are clustered: each i belongs to a
cluster ¢(/).

Model
Pr(Y; =1|n;) = Iogit_l(n;)
and
ni = o+ Bx; + oug;)
where u;j ~ N(0, 1).

Want to do inference on 6 = («, 3, 0).



Example 1: a two-level model

library(1lme4)
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Example 1: a two-level model

library(1lme4)
glmer (response ~ covariate + (1 | cluster), data = two_level,
family = binomial)

## Generalized linear mixed model fit by maximum likelihood (Laplace
##  Approximation) [glmerMod]

## Family: binomial ( logit )

## Formula: response ~ covariate + (1 | cluster)

## Data: two_level

## AIC BIC logLik deviance df.resid
## 137.8656 145.6811 -65.9328 131.8656 97
## Random effects:

## Groups Name Std.Dev.

## cluster (Intercept) 0.7475

## Number of obs: 100, groups: cluster, 50
## Fixed Effects:

## (Intercept) covariate

#it 0.6521 -1.1575



The likelihood

Write
fy (yil0, uc(iy) = Pr(Yi = yilni = o+ Bxi + ouc(y)
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The likelihood

Write
fy (yil0, uc(iy) = Pr(Yi = yilni = o+ Bxi + ouc(y)

o) = [ TL60lo.un H¢u,
"i=1

An n-dimensional integral.

Then

But
L(oly) = H/ TT il6, u)o(uy)d;
O ize()=j

so only need to compute one-dimensional integrals.
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Example 1: a two-level model

glmer (response ~ covariate + (1 | cluster), data = two_level,

##
##
##
##
##
##
##
##
##
##
##
##
##
##

family = binomial, nAGQ = 10)

Generalized linear mixed model fit by maximum likelihood (Adaptive
Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]

Family: binomial ( logit )

Formula: response ~ covariate + (1 | cluster)

Data: two_level
AIC BIC logLik deviance df.resid
137.2254 145.0409 -65.6127 131.2254 97
Random effects:
Groups Name Std.Dev.
cluster (Intercept) 1.041
Number of obs: 100, groups: cluster, 50

Fixed Effects:
(Intercept) covariate
0.7167 -1.2734



Comparing approximations to the loglikelihood
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Example 2: a three-level model

Each cluster c is itself contained within larger group g(c).



Example 2: a three-level model
Each cluster c is itself contained within larger group g(c).

Have
ni = &+ Bx; + oclc(iy + TgVg(c(i))

where each uj, v; ~ N(0,1).

Do inference on 0 = (o, 3, 0c, 04)
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Example 2: a three-level model

glmer (response ~ covariate + (1 | cluster) + (1 | group),
data = three_level, family = binomial)

## Generalized linear mixed model fit by maximum likelihood (Laplace
##  Approximation) [glmerMod]

## Family: binomial ( logit )

## Formula: response ~ covariate + (1 | cluster) + (1 | group)

## Data: three_level

## AIC BIC logLik deviance df.resid
## 283.4225 296.6157 -137.7112 275.4225 196
## Random effects:

## Groups Name Std.Dev.

## cluster (Intercept) 0.3576

## group (Intercept) 0.4257

## Number of obs: 200, groups: cluster, 100; group, 50
## Fixed Effects:

## (Intercept) covariate

#it -0.1908 0.1198



Example 2: a three-level model
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Example 2: a three-level model

glmer (response ~ covariate + (1 | cluster) + (1 | group),
data = three_level, family = binomial, nAGQ = 10)

## Error in updateGlmerDevfun(devfun, glmod$reTrms, nAGQ = nAGQ):
## nAGQ > 1 is only available for models with a single, scalar
## random-effects term
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The sequential reduction approximation

The integrand of the likelihood factorizes

n

Lely) = [ TI60io,w)]] é(u)du.
Rn
i=1

Jj=1

Typically, each f,(y;|0,u) depends on only a few u;.

In the three-level model, each observation involves two random effects, one
for the cluster and one for the group.

The sequential reduction approximation exploits this factorization
structure.

Ogden, H. E. (2015). A sequential reduction method for inference in generalized linear
mixed models. Electronic Journal of Statistics, 9, 135-152.



The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points



The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points
2. the ‘level of approximate function storage’, k



The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points
2. the ‘level of approximate function storage’, k

(a) k=2 (b) k=3 (c) k=4
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glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k
to be larger than 0.

Internally, glmmsr uses rgraphpass to compute the likelihood
approximation.

Why two packages?

» rgraphpass is still in active development, and does not yet work in
Windows. You can use glmmsr as an extended interface to 1me4
without installing rgraphpass.

» rgraphpass could be extended to do computations for models other
than GLMMs (graphical models with continuous variables)



Back to three-level model

library(glmmsr)

glmerSR(response ~ covariate + (1 | cluster) + (1 | group),
data = three_level, family = binomial,
nAGQ = 10, k = 3)



Back to three-level model

library(glmmsr)
glmerSR(response ~ covariate + (1 | cluster) + (1 | group),

##
##
##
##
##
##
##
##
##
##
##

data = three_level, family = binomial,
nAGQ = 10, k = 3)

Generalized linear mixed model fit by maximum likelihood (Sequential
Reduction Approximation, k = 3, nAGQ = 10) [glmerSRMod]
Family: binomial ( logit )
Formula: response ~ covariate + (1 | cluster) + (1 | group)
Groups Name Estimate
1 cluster (Intercept) 0.6461
2 group (Intercept) 0.4504
Number of obs: 200, groups: cluster, 100; group, 50;
Fixed effects:
(Intercept) covariate
-0.2077 0.1389



Comparing approximations to the loglikelihood
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Part Il: an extended interface



Example 3: fighting flat-lizards

ARKIiVvVe

www.arkive.org

© Petenr Chadwick

Whiting, M. J., Stuart-Fox, D. M., O'Connor, D., Firth, D., Bennett, N. C., &
Blomberg, S. P. (2006). Ultraviolet signals ultra-aggression in a lizard. Animal
Behaviour, 72(2), 353-363.



Example 3: fighting flat-lizards
Data available as flatlizards in BradleyTerry2.

names (flatlizards$contests)

## [1] "winner" "loser"

names (flatlizards$predictors)

##  [1] "ia" "throat.PC1" "throat.PC2" "throat.PC3"
## [56] "frontleg.PC1" "frontleg.PC2" "frontleg.PC3" "badge.PC1"

## [9] "badge.PC2" "badge.PC3" "badge.size"  "testosterone"
## [13] "svL" "head.length" "head.width" "head.height"

## [17] "condition" "repro.tactic"
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Example 3: fighting flat-lizards
Lizard i has ‘ability’ A;, and

Pr(l beatsj|)\,-, AJ) = (D()\, — )\J)

We are interested in how a lizard's ability depends on covariates x;.

We model
N =BTx +ouj,

where u; ~ N(0,1).



Example 3: fighting flat-lizards

library(BradleyTerry2)

BTm(result, winner, loser, ~ throat.PC1[..] + throat.PC3[..]
+ head.length[..] + SVL[..] + (1]..),
family = binomial(link = "probit"), data = lizards_BT)



Example 3: fighting flat-lizards

library(BradleyTerry2)

BTm(result, winner, loser, ~ throat.PCi[..] + throat.PC3[..]
+ head.length[..] + SVL[..] + (1]..),
family = binomial(link = "probit"), data = lizards_BT)

## Bradley Terry model fit by glmmPQL.fit

##

## Call:

## BTm(outcome = result, playerl = winner, player2 = loser,

#it formula = ~throat.PCi[..] + throat.PC3[..] + head.lengthl..]
## + SVL[..] + (1 | ..), family = binomial(link = "probit"),

## data = lizards_BT)

##

## Fixed effects:

##

## throat.PC1[..]  throat.PC3[..] head.length[..] SVL[..]
## -0.04914 0.24061 -0.80876 0.10778
##

## Random Effects Std. Dev.: 0.6057213
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1. The model for the match outcomes in terms of unknown ‘abilities’
2. The model for the unknown ability of each lizard
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A sub-formula interface

We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown ‘abilities’
2. The model for the unknown ability of each lizard

We want to mimic this two-stage specification in R.

Main formula

result ~ O + Sub(ability[winner] - ability[loser])

result, winner and loser are in data, ability is not.

Sub-formula

ability[liz] ~ O + covariates[liz] + (1 | 1liz)

covariates are in data, ability and liz are not.



Back to flat-lizards data

glmerSR(result ~ O + Sub(ability[winner] - ability[loser]),
ability[liz] ~ O + throat.PC1[liz] + throat.PC3[liz] +
head.length[1liz] + SVL[1liz] + (1 | 1liz),

data = lizards, family = binomial(link = "probit"))



Back to flat-lizards data

glmerSR(result ~ O + Sub(ability[winner] - ability[loser]),
ability[liz] ~ O + throat.PC1[liz] + throat.PC3[liz] +
head.length[1liz] + SVL[1liz] + (1 | 1liz),

data = lizards, family = binomial(link = "probit"))

## Generalized linear mixed model fit by maximum likelihood (Laplace
##  Approximation) [glmerMod]
## Family: binomial ( probit )

## AIC BIC logLik deviance df.resid
## 99.6052 112.6310 -44.8026 89.6052 95
## Random effects:

## Groups Name Std.Dev.

##  liz (Intercept) 1.043

## Number of obs: 100, groups: 1liz, 77

## Fixed Effects:

## throat.PC1[liz]  throat.PC3[liz] head.length[liz] SVL[1liz]
## -0.07449 0.39376 -1.41852 0.16409
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» glmmsr provides an improved likelihood approximation
> uses the rgraphpass package, which is still in development

» rgraphpass could be extended for other types of model: please let
me know if you have ideas!
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Conclusions

Approximating the likelihood

» glmmsr provides an improved likelihood approximation
> uses the rgraphpass package, which is still in development

» rgraphpass could be extended for other types of model: please let
me know if you have ideas!

A new interface

» glmmsr provides an extension to the interface to 1me4, to allow easy
fitting of pairwise competition models.

> Many other types of models possible with this interface: please let me
know if you have examples!

glmmsr available at github.com/heogden/glmmsr


github.com/heogden/glmmsr
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