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Part I: approximating the likelihood



Example 1: a two-level model
Have binary observations yi which are clustered: each i belongs to a
cluster c(i).

Model
Pr(Yi = 1|ηi ) = logit−1(ηi )

and
ηi = α + βxi + σuc(i)

where uj ∼ N(0, 1).

Want to do inference on θ = (α, β, σ).
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Example 1: a two-level model
library(lme4)
glmer(response ~ covariate + (1 | cluster), data = two_level,

family = binomial)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: response ~ covariate + (1 | cluster)
## Data: two_level
## AIC BIC logLik deviance df.resid
## 137.8656 145.6811 -65.9328 131.8656 97
## Random effects:
## Groups Name Std.Dev.
## cluster (Intercept) 0.7475
## Number of obs: 100, groups: cluster, 50
## Fixed Effects:
## (Intercept) covariate
## 0.6521 -1.1575
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The likelihood
Write

fy (yi |θ, uc(i)) = Pr(Yi = yi |ηi = α + βxi + σuc(i))

Then

L(θ|y) =
∫
Rn

m∏
i=1

fy (yi |θ, uc(i))
n∏

j=1
φ(uj)du

An n-dimensional integral.

But

L(θ|y) =
n∏

j=1

∫ ∞
−∞

∏
i :c(i)=j

fy (yi |θ, uj)φ(uj)duj

so only need to compute one-dimensional integrals.
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Example 1: a two-level model
glmer(response ~ covariate + (1 | cluster), data = two_level,

family = binomial, nAGQ = 10)

## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
## Family: binomial ( logit )
## Formula: response ~ covariate + (1 | cluster)
## Data: two_level
## AIC BIC logLik deviance df.resid
## 137.2254 145.0409 -65.6127 131.2254 97
## Random effects:
## Groups Name Std.Dev.
## cluster (Intercept) 1.041
## Number of obs: 100, groups: cluster, 50
## Fixed Effects:
## (Intercept) covariate
## 0.7167 -1.2734
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Comparing approximations to the loglikelihood
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Example 2: a three-level model
Each cluster c is itself contained within larger group g(c).

Have
ηi = α + βxi + σcuc(i) + σgvg(c(i))

where each uj , vj ∼ N(0, 1).

Do inference on θ = (α, β, σc , σg )
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Example 2: a three-level model
glmer(response ~ covariate + (1 | cluster) + (1 | group),

data = three_level, family = binomial)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: response ~ covariate + (1 | cluster) + (1 | group)
## Data: three_level
## AIC BIC logLik deviance df.resid
## 283.4225 296.6157 -137.7112 275.4225 196
## Random effects:
## Groups Name Std.Dev.
## cluster (Intercept) 0.3576
## group (Intercept) 0.4257
## Number of obs: 200, groups: cluster, 100; group, 50
## Fixed Effects:
## (Intercept) covariate
## -0.1908 0.1198
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Example 2: a three-level model
glmer(response ~ covariate + (1 | cluster) + (1 | group),

data = three_level, family = binomial, nAGQ = 10)

## Error in updateGlmerDevfun(devfun, glmod$reTrms, nAGQ = nAGQ):
## nAGQ > 1 is only available for models with a single, scalar
## random-effects term
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The sequential reduction approximation
The integrand of the likelihood factorizes

L(θ|y) =
∫
Rn

m∏
i=1

fy (yi |θ,u)
n∏

j=1
φ(uj)du.

Typically, each fy (yi |θ,u) depends on only a few uj .

In the three-level model, each observation involves two random effects, one
for the cluster and one for the group.

The sequential reduction approximation exploits this factorization
structure.
Ogden, H. E. (2015). A sequential reduction method for inference in generalized linear
mixed models. Electronic Journal of Statistics, 9, 135-152.
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The sequential reduction approximation
Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points

2. the ‘level of approximate function storage’, k
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glmmsr and rgraphpass
The sequential reduction approximation is available in glmmsr by setting k
to be larger than 0.

Internally, glmmsr uses rgraphpass to compute the likelihood
approximation.

Why two packages?

I rgraphpass is still in active development, and does not yet work in
Windows. You can use glmmsr as an extended interface to lme4
without installing rgraphpass.

I rgraphpass could be extended to do computations for models other
than GLMMs (graphical models with continuous variables)
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Back to three-level model
library(glmmsr)
glmerSR(response ~ covariate + (1 | cluster) + (1 | group),

data = three_level, family = binomial,
nAGQ = 10, k = 3)

## Generalized linear mixed model fit by maximum likelihood (Sequential
## Reduction Approximation, k = 3, nAGQ = 10) [glmerSRMod]
## Family: binomial ( logit )
## Formula: response ~ covariate + (1 | cluster) + (1 | group)
## Groups Name Estimate
## 1 cluster (Intercept) 0.6461
## 2 group (Intercept) 0.4504
## Number of obs: 200, groups: cluster, 100; group, 50;
## Fixed effects:
## (Intercept) covariate
## -0.2077 0.1389
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Comparing approximations to the loglikelihood
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Part II: an extended interface



Example 3: fighting flat-lizards

Whiting, M. J., Stuart-Fox, D. M., O’Connor, D., Firth, D., Bennett, N. C., &
Blomberg, S. P. (2006). Ultraviolet signals ultra-aggression in a lizard. Animal
Behaviour, 72(2), 353-363.



Example 3: fighting flat-lizards
Data available as flatlizards in BradleyTerry2.

names(flatlizards$contests)

## [1] "winner" "loser"

names(flatlizards$predictors)

## [1] "id" "throat.PC1" "throat.PC2" "throat.PC3"
## [5] "frontleg.PC1" "frontleg.PC2" "frontleg.PC3" "badge.PC1"
## [9] "badge.PC2" "badge.PC3" "badge.size" "testosterone"
## [13] "SVL" "head.length" "head.width" "head.height"
## [17] "condition" "repro.tactic"



Example 3: fighting flat-lizards



Example 3: fighting flat-lizards
Lizard i has ‘ability’ λi , and

Pr(i beats j |λi , λj) = Φ(λi − λj)

We are interested in how a lizard’s ability depends on covariates xi .

We model
λi = βT xi + σui ,

where ui ∼ N(0, 1).
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Example 3: fighting flat-lizards
library(BradleyTerry2)
BTm(result, winner, loser, ~ throat.PC1[..] + throat.PC3[..]

+ head.length[..] + SVL[..] + (1|..),
family = binomial(link = "probit"), data = lizards_BT)

## Bradley Terry model fit by glmmPQL.fit
##
## Call:
## BTm(outcome = result, player1 = winner, player2 = loser,
## formula = ~throat.PC1[..] + throat.PC3[..] + head.length[..]
## + SVL[..] + (1 | ..), family = binomial(link = "probit"),
## data = lizards_BT)
##
## Fixed effects:
##
## throat.PC1[..] throat.PC3[..] head.length[..] SVL[..]
## -0.04914 0.24061 -0.80876 0.10778
##
## Random Effects Std. Dev.: 0.6057213
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A sub-formula interface
We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown ‘abilities’
2. The model for the unknown ability of each lizard

We want to mimic this two-stage specification in R.

Main formula

result ~ 0 + Sub(ability[winner] - ability[loser])

result, winner and loser are in data, ability is not.

Sub-formula

ability[liz] ~ 0 + covariates[liz] + (1 | liz)

covariates are in data, ability and liz are not.
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Back to flat-lizards data
glmerSR(result ~ 0 + Sub(ability[winner] - ability[loser]),

ability[liz] ~ 0 + throat.PC1[liz] + throat.PC3[liz] +
head.length[liz] + SVL[liz] + (1 | liz),

data = lizards, family = binomial(link = "probit"))

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( probit )
## AIC BIC logLik deviance df.resid
## 99.6052 112.6310 -44.8026 89.6052 95
## Random effects:
## Groups Name Std.Dev.
## liz (Intercept) 1.043
## Number of obs: 100, groups: liz, 77
## Fixed Effects:
## throat.PC1[liz] throat.PC3[liz] head.length[liz] SVL[liz]
## -0.07449 0.39376 -1.41852 0.16409
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Conclusions
Approximating the likelihood

I glmmsr provides an improved likelihood approximation
I uses the rgraphpass package, which is still in development
I rgraphpass could be extended for other types of model: please let

me know if you have ideas!

A new interface

I glmmsr provides an extension to the interface to lme4, to allow easy
fitting of pairwise competition models.

I Many other types of models possible with this interface: please let me
know if you have examples!

glmmsr available at github.com/heogden/glmmsr

github.com/heogden/glmmsr
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