Web Application Teaching Tools Using Shiny and R

Gail E. Potter

Joint work with Jimmy Doi, Peter Chi, Jimmy Wong, Irvin Alcaraz

Background

- * Computer simulations with visualizations improve student comprehension in intro statistics courses.
- * Ideally, students themselves experiment with the simulations.
- * Need an accessible software interface.

Existing tools

- * Web-based Java & JS applets
- * Demonstration scripts in JMP or other software
 - * Accessible to students
 - * Hard for instructor to tailor them
 - * Have to pay for software
- * Write your own in R
 - * Hard for intro-level students to use on their own.

Bridging the gap

THE PROBLEM:

Want to use R to create applets which are accessible to non-R users.

Bridging the gap

THE PROBLEM:

Want to use R to create applets which are accessible to non-R users.

THE SOLUTION:

The Shiny package created by RStudio.

Outline

- * The Cal Poly Shiny Project
- * Introduction to Shiny
- * Demonstration of 3 apps
- * Discussion & Conclusion

The Cal Poly Shiny Project

Group project at Cal Poly State University

- * Faculty members:
 - * Jimmy Doi
 - * Gail Potter
 - * Peter Chi
- * Statistics graduates:
 - * Jimmy Wong
 - * Irvin Alcaraz

Shiny Project GOALS

- * Create a gallery of web-based apps for statistical educators to use: http://statistics.calpoly.edu/shiny
- * Provide links to source code.
- * Write paper illustrating the utility of Shiny for statistical education (now under revision).

Intro to Shiny

- * Web application framework for R created by RStudio
- * Helpful tutorials at http://shiny.rstudio.com/tutorial/
- * Two scripts:
 - * ui.R Creates user interface
 - * server.R Processes inputs, creates objects for output
- * Some free web-hosting (up to 5 apps, 25 active hours/month)

Demonstration of 3 apps

- * Robustness of the ANOVA F-test
- * Multiple regression visualizer
- * Maximum likelihood estimation

Robustness of ANOVA F-test

GOAL: Assess the impact of unequal variances on Type I error rate and power of the ANOVA F-test

Demonstration: Robustness of ANOVA F-test

Created by Gail Potter

Multiple Regression Visualization

GOAL: Display visualizations of various multiple regression prediction surfaces.

Demonstration: Multiple Regression Visualization

Created by Irvin Alcaraz

Maximum Likelihood Estimation

GOAL: Visualize the likelihood function and compare/contrast it to the probability mass function.

Demonstration: Maximum Likelihood Estimation

Created by Gail Potter

Challenges

- * Reliance on cutting-edge packages updates may remove or change features
- * Changing pricing scheme for web-hosting

Tips

- * Work through RStudio's Shiny tutorials.
- * Save working versions of app when modifying code.
- * Ask for support (Google groups, RStudio, etc.).

Conclusions

- * Shiny is a helpful tool for statistics educators who want to produce accessible software tools.
- * We created a total of 20 apps on a variety of topics, found at http://statistics.calpoly.edu/shiny
- * Our source code is also available so you may tailor apps to your own purposes.

Thank you!

- * Jimmy Doi
- * Peter Chi
- * Jimmy Wong
- * Irvin Alcaraz
- * RStudio
- * Cal Poly Computing Support

