Web Application Teaching Tools Using Shiny and R Gail E. Potter Joint work with Jimmy Doi, Peter Chi, Jimmy Wong, Irvin Alcaraz #### Background - * Computer simulations with visualizations improve student comprehension in intro statistics courses. - * Ideally, students themselves experiment with the simulations. - * Need an accessible software interface. #### Existing tools - * Web-based Java & JS applets - * Demonstration scripts in JMP or other software - * Accessible to students - * Hard for instructor to tailor them - * Have to pay for software - * Write your own in R - * Hard for intro-level students to use on their own. # Bridging the gap #### THE PROBLEM: Want to use R to create applets which are accessible to non-R users. ### Bridging the gap #### THE PROBLEM: Want to use R to create applets which are accessible to non-R users. #### THE SOLUTION: The Shiny package created by RStudio. #### Outline - * The Cal Poly Shiny Project - * Introduction to Shiny - * Demonstration of 3 apps - * Discussion & Conclusion #### The Cal Poly Shiny Project #### Group project at Cal Poly State University - * Faculty members: - * Jimmy Doi - * Gail Potter - * Peter Chi - * Statistics graduates: - * Jimmy Wong - * Irvin Alcaraz #### Shiny Project GOALS - * Create a gallery of web-based apps for statistical educators to use: http://statistics.calpoly.edu/shiny - * Provide links to source code. - * Write paper illustrating the utility of Shiny for statistical education (now under revision). #### Intro to Shiny - * Web application framework for R created by RStudio - * Helpful tutorials at http://shiny.rstudio.com/tutorial/ - * Two scripts: - * ui.R Creates user interface - * server.R Processes inputs, creates objects for output - * Some free web-hosting (up to 5 apps, 25 active hours/month) #### Demonstration of 3 apps - * Robustness of the ANOVA F-test - * Multiple regression visualizer - * Maximum likelihood estimation #### Robustness of ANOVA F-test GOAL: Assess the impact of unequal variances on Type I error rate and power of the ANOVA F-test ## Demonstration: Robustness of ANOVA F-test Created by Gail Potter #### Multiple Regression Visualization GOAL: Display visualizations of various multiple regression prediction surfaces. # Demonstration: Multiple Regression Visualization Created by Irvin Alcaraz #### Maximum Likelihood Estimation GOAL: Visualize the likelihood function and compare/contrast it to the probability mass function. # Demonstration: Maximum Likelihood Estimation Created by Gail Potter ## Challenges - * Reliance on cutting-edge packages updates may remove or change features - * Changing pricing scheme for web-hosting #### Tips - * Work through RStudio's Shiny tutorials. - * Save working versions of app when modifying code. - * Ask for support (Google groups, RStudio, etc.). #### Conclusions - * Shiny is a helpful tool for statistics educators who want to produce accessible software tools. - * We created a total of 20 apps on a variety of topics, found at http://statistics.calpoly.edu/shiny - * Our source code is also available so you may tailor apps to your own purposes. #### Thank you! - * Jimmy Doi - * Peter Chi - * Jimmy Wong - * Irvin Alcaraz - * RStudio - * Cal Poly Computing Support