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e Tornadoes are common in the United States particularly in the Midwest and
South.

= Violent circulation attached to a parent cloud with rotational winds in
excess 30 m/s.

= Causes fatalities and complete destruction of buildings.

e Many tornadoes often occur in a single day known as an outbreak.
= Define an outbreak as a single day with more than N tornadoes.

= N=16
e Qutbreak may be split geographically into separate regions.
= Reflect local nature of outbreak.
= Tornado characteristics and environment vary from region to region.



EF Rating Wind Speeds Expected Damag

EF-0

‘Minor’ damage: shingles blown off or parts of a
roof peeled off, damage to gutters/siding,
branches broken off trees, shallow rooted trees
toppled.

EF-1

‘Moderate’ damage: more significant roof
damage, windows broken, exterior doors
86-110 mph

damaged or lost, mobile homes overturned or
badly damaged.

EF-2

‘Considerable’ damage: roofs torn off well
constructed homes, homes shifted off their
111-135 mph foundation, mobile homes completely
destroyed, large trees snapped or uprooted,
cars can be tossed.

EF-3

‘Severe’ damage: entire stories of well
constructed homes destroyed, significant
136-165 mph damage done to large buildings, homes with
weak foundations can be blown away, trees
begin to lose their bark.

EF-4

‘Extreme’ damage: Well constructed homes are
leveled, cars are thrown significant distances,
top story exterior walls of masonry buildings

would likely collapse.

EF-5

‘Massive/incredible’ damage: Well constructed
homes are swept away, steel-reinforced
concrete structures are critically damaged,
high-rise buildings sustain severe structural
damage, trees are usually completely debarked,

stripped of branches and snapped.



 How does spatial clustering help us define the notion of a tornado
outbreak?

e How do tornado outbreaks differ from each other?

e What mesoscale environmental conditions effect the frequency and energy
of each tornado in an outbreak?

e \What environment characteristics are common between tornado
outbreaks?

e Could this method be used to identify conditions that lead to outbreaks?




strategy for analysis

Reduce to outbreak days and split the data set by days.
For each day cluster tornadoes into groups.
For each group find the convex hull of tornado start locations.

Generate summary statistics of
= tornadoes within each group.

= environmental conditions within each convex hull.

Model the relationship between the tornado statistics and environmental
conditions.



Tornado Data Set

We use a modified tornado data set keeping tornado paths in the Midwest and
South from from 1979 to 2010 of at least EFO (FO) strength. The data set is put

into R SpatialLinesDataFrame objects or arrays. We use the R ggplot2
package for plotting data sets.

e Tornado data set is a spatial line data set with attributes from the SPC.
= Use staring location and storm strength in our study.

e Reanalysis (Environmental) data from Climate Forecast System Reanalysis
from NCAR

= |nitially we examine the CAPE and HLCY.
= 1/2° by 1/2° resolution spatially
= 4 times per day at 0000Z, 0600Z, 1200Z, 1800Z
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e why? separate tornadoes into groups for analysis
= Each group may have different characteristics

e what? The staring spatial locations for each tornado.
= X and y values in the Lambert Conformal Conic projection
o centered at 33° N

= could use storm strength, EF magnitude, alone or as another clustering
variable.

e Why use partitioning around medoid type of clustering?
= Provide a sample observation representative of the whole.

= Cluster around an actual tornado, not just an empty center.

= The mediod tornado is not unique, just representative sample from
cluster.



e Subset tornado database to fit within our bounding box, and remove
tornadoes without EF classification.

e Remove all days with less than 16 tornadoes.
e Split data by day and run medoid clustering algorithm.

e Create a convex hull around each cluster, enlarge it by 25km and convert to
lon lat projection.

xxX = subset(TornC.spdf, Date == "2007-05-05")
cc = coordinates (xx)

best = pamk(cc, krange = 1:(N-1), alpha = .01)
cluster = bestS$SpamobjectS$Sclustering

clustloc = split(l:length(xx),cluster)

Hulls = lapply(clustloc, function(1i)

spTransform(gBuffer (gConvexHull (xx[1,]),1id=cluster[i[1l]],width=25000),longlat))

Hulls.df = do.call("rbind",lapply(Hulls, fortify))

Map = get map(location = c(lon=-99.5,1lat=39.8), source = "google",
ma.ptype — llroadmap", Zoom = 6, color = llan)
ggmap (Map, extent = "panel") + geom point(aes(x = slon, y = slat),

data = TornC.df|[TornC.df$SDate == dd, ],color = "black") +
geom polygon(aes(x = long, y = lat, fill=id ,alpha=.5),

data = Hulls.df
,show guide=FALSE)+scale fill manual(values=c("red", "orange"))



Clusters on May 9, 2007
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Summary Statistics and Analysis

e We calculate summary statistics within each cluster using the
= tornado data set, for each group of tornadoes.

= environmental data within each convex hull at 1200Z and 1800Z.

e \We combine these into a single dataframe for analysis.

e We use R-INLA to analyze the relationship of
= total kinetic energy and tornado counts to
o Convective Available Potential Energy (CAPE),

o Storm relative helicity (HLCY).



Summary Statistics for Tornadoes

e [otal count of:
= NI Tornadoes, at least EFO.

= NnST Strong Tornadoes, at least EFS.

e Total Kinetic Energy for all tornadoes.
« TKE = Height * Area * TKE per m°:
o Height approximated as 1km
o Area approximated by ellipsoid.
o Fixed proprtion of areas assigned to each EF strength.

> Uses midpoint of EF scale E = 1/2pV?
o p ~ 10°kg/m?

Total kinetic energy in megajoules per mS based on the tornado's strength is:

EFO EF1 EF2 EF3 EF4 EF5

0570 0661 0786 0919 0974 1054



Distribution of 10g10(TKE)
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e Thunderstorms may form if there is the potential for covection with lots of
CAPE and little CIN.

= Convective Available Potential Energy
= Convective INhibition
= CIN is required to get lots of CAPE.

e Thunderstorms may become super cell thunderstorms.
= Updraft sustained by wind shear.

= Storm rotates with directional wind shear.

e Super Cell thunderstorms may produce tornadoes.
= Surface inflow wind contains rotation that upscales.

= 0 - 3000m, total column storm relative helicity (HLCY)
e CAPE and HLCY measured in Joules/Kg or m2 / %



sample Gape and Resulting Tornadoes
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e Calculated the mean, maximum, median and standard deviation.
= Within the convex hulls generated for each cluster

= CAPE and HLCY at 1200Z and 1800Z

e Used only the 1800Z weighted mean values.
= Values within each CAPE/HLCY grid box assumed to be the same value.

= Grid intersection areas used as weights.

= Use rgeos functions.
o glntersects to find which grids are in each cluster.

o glntersection to find the spatial intersection of each grid to the cluster.
o gArea to find the are of the intersection.

o gConvexHull to create convex hull for each cluster.

o gBuffer to expand each hull by 80km.

e Need to explore wind shear
» Reanalysis data exists (u,v) for many levels from surface to stratosphere.



Analysis using R-INLA

e See http://www.r-inla.org, Bayesian modelling using integrated nested
Laplace approximation.

e Previous work using INLA: Rpubs Tornado Climatology

e All covariates and response require scaling.

e Negative binomial distribution for counts.

e Gamma distribution for mean TKE per tornado in Terajoules, mTKET.

 Model covariates for mTKET are
= LnT Logarithm for Number of Tornadoes,

= CAPEK CAPE in K Joules,
= HLCYH Storm relative helicity in H Joules.

e Model covariates for nT and nST are
= CAPEK and HLCYH.



Model Output for mTKET

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) -2.690 0.234 -3.143 -2.693 -2.223 -2.697 0
InT 0.782 0.069 0.643 0.783 0.916 0.784 0
CAPEK -0.432 0.096 -0.618 -0.433 -0.242 -0.435 0
HLCYH 0.405 0.077 0.256 0.404 0.557 0.403 0

The model has no random effects

Model hyperparameters:
mean sd 0.025quant 0.5quant

Precision parameter for the Gamma observations 0.563 0.026 0.513 0.563
0.975quant mode
Precision parameter for the Gamma observations 0.617 0.562

Expected number of effective parameters(std dev): 4.01(0.00)
Number of equivalent replicates : 158.27

Deviance Information Criterion: 825.34
Effective number of parameters: 4.65
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Model Outputs for nT

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) 2.760 0.084 2.595 2.760 2.926 2.760 0
HLCYH 0.173 0.036 0.102 0.173 0.245 0.173 0
CAPEK 0.066 0.051 -0.034 0.066 0.167 0.066 0

The model has no random effects

Model hyperparameters:
mean sd 0.025quant

size for the nbinomial observations (overdispersion) 2.63 0.166 2.32
0.5quant 0.975quant mode
size for the nbinomial observations (overdispersion) 2.63 2.98 2.62

Expected number of effective parameters(std dev): 3.02(0.001)
Number of equivalent replicates : 209.61

Deviance Information Criterion: 4999.01
Effective number of parameters: 3.67
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e 1800Z mean cape and mean helicity significantly related to mean TKE,
controlling for the number of tornadoes.

» |leads to -35% and 50% in posterior mean TKE for each 1000 J/Kg
increase in CAPE and 100 J/Kg helicity.

= Using the logarithm of nT, negates needing to model both mean TKE and
total TKE.

e Helicity is strongly related to number of storms and strong storms per
cluster.

= Cape is marginally related.
= |eads to 7% and 19% in posterior mean nT and 16% and 83% In

posterior mean nST respectively with each 1000 Joule increase in cape
and 100 J helicity, controlling for the other covariate.



summary

e Using cluster methods we can separate groups for further study.
» The fpc package with the pamk() function was used for medoid
clustering.
= The clustering algorithm runs quickly, so is suitable for data sets in which
you may want to perform many clusters.
o We had over 500 cluster days with 634 clusters.
o We had (400,84,7,5,3,1,1) days with (1,2,3,4,5,7,8) clusters
respectively.
e Interesting findings within relationships inside clusters:
= While CAPE is required for storms to form, the observed cape within
clusters seems to be negatively related to TKE.

= Increasing HLCY seems to increase both the number of tornadoes, and
the mean TKE a measure of efficiency of tornado production.



o Better identification of tornadoes and tornado clusters.
= Qutlier detection and removal.

e Better selection of geographical areas associated with each region of an
outbreak.

= Non convex regions possibly defined by level sets of tornado density
estimates.

e Addition of other variables.
= Storm shear in the environment.

= Storm size in clustering algorithm.



Thank you for your time.
Analysis and Talk on http://rpubs.com/thjagger/

Thomas Jagger tjagger@fsu.edu
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