

Multinomial functional regression with application to lameness detection for horses

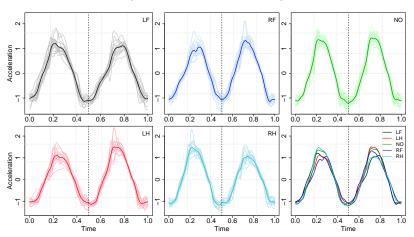
Helle Sørensen (helle@math.ku.dk)
Joint with Seyed Nourollah Mousavi

Background and aim for case study

Data collected by veterinarian **Maj Halling Thomsen** and her colleaugues at University of Copenhagen.

Problem: Difficult to detect lameness and identify the injured limb, especially for low-degree lameness

- Visual inspection and clinical examination is highly subjective
- Large variability in assessments from different veterinarians, and also between repeated assessments from the same vet


Aim: Develop an objective method for lameness detection

Detection of lameness: The movie

85 data signals (after preprocessing)

- Each curve: 'Average' vertical acceleration for one gait cycle
- First half: Stance on right-fore/left-hind diagonal

Problem and approach

Classification for functional data: Given a data signal, which group does it belong to?

Our approach:

- Functional multinomial regression using wavelets and LASSO
- Idea: wavelets offer precise approximations with sparse representations; use LASSO to induce sparseness
- Extension of the work by Zhao, Ogden, Reiss (2012)

Multinomial functional regression (MFR)

Data: Covariate functions $x_i(t)$, categorical outcomes $y_i \in \mathcal{M}$

Regression model

- Linear predictor for group m: $\eta_m(x) = \alpha_m + \int \beta_m(t) x(t) dt$
- Conditional probabilities:

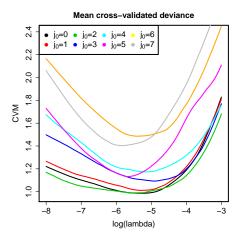
$$p_m(x) = P(Y = m|X = x) = \frac{e^{\eta_m(x)}}{\sum_{l \in \mathcal{M}} e^{\eta_l(x)}}$$

• Unknowns: Intercepts α_m and coefficient functions $\beta_m(t)$

Classification of new curve, x_0 : Compute $\hat{\eta}_m(x_0)$ and $\hat{p}_m(x_0)$ for all groups, and assign x_0 to group with largest probability

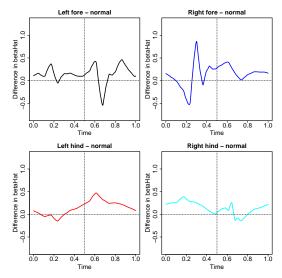
Estimation and computations

Estimation approach

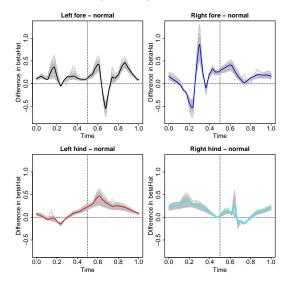

- Expand functions x_i in a wavelet basis
- Use wavelet coefficients as covariates in ordinary multinomial regression with LASSO penalization
- ullet Translate estimated regression coef's to coef. functions \hat{eta}_m
- Tuning parameters are selected with **cross validation**: resolution level j_0 in wavelet basis and penalty parameter λ

Computations

- fda package for preprocessing
- wavethresh package for wavelet computations
- glmnet package for penalized multinomial regression



Cross validation results



Estimated coefficient functions: $\hat{eta}_m - \hat{eta}_{no}$

... and 100 bootstrap samples

Classification results

Leave-one-out classification:

	Predicted group				
True group	LF	LH	NO	RF	RH
LF	13	0	2	0	1
LH	1	12	2	1	0
NO	1	1	19	1	1
RF	0	2	1	13	0
RH	1	0	2	0	11

- 68 curves classified to correct group (80%); five more curves to correct diagonal; only one curve to wrong diagonal
- \bullet PC-LDA and method by Ferraty+Vieu (2003): $\approx 65\%$ correct

Simulation study with similar data: 89% correct classifications

Discussion

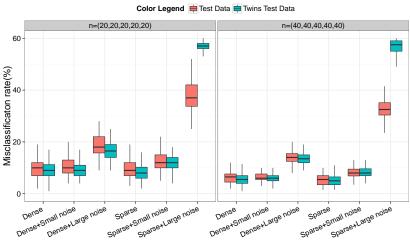
- Estimated $\hat{\beta}_m$'s satisfy, to some extend, natural symmetry restrictions. Possible to build in those restrictions explicitly.
- MFR performs at least as well as the other methods we have tested — also in application from speech recognition
- Many possible variations which we didn't pursue
- Data come from only eight horses! Calls for random effect
 of horse at least for inference about coefficient functions.

Thank you for your attention

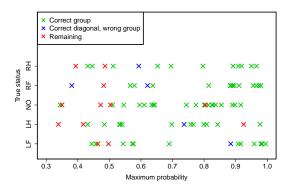
Questions and comments are most welcome: helle@math.ku.dk

References

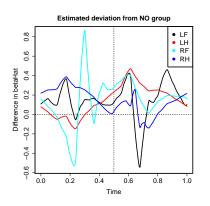
Mousavi, S. N., and Sørensen, H. (2015). Multinomial functional regression with wavelets and LASSO penalization. Submitted.

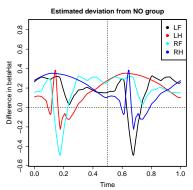

Zhao, Y., Ogden, R. T., and Reiss, P. T. (2012). Wavelet-based LASSO in functional linear regression. *Journal of Computational and Graphical Statistics*, 21:600–617.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of statistical software*, 33(1):1.


Ferraty, F. and Vieu, P. (2003). Curves discrimination: a nonparametric functional approach. *Computational Statistics & Data Analysis*, 44:161–173.

Simulation results




Probabilities for classification

Estimated coefficient functions with symmetry restrictions

