
Using R for mathematical modelling

(the environment).

Karline Soetaert

�Model = simplifications of the complex natural environment

�Test model to data

�Quantification of unmeasured processes

�Budgetting, interpolation in time/space
�….

�Prediction of future behavior

Natural systems are very complex

� Scientists want to understand this complexity and make quantitative
predictions

Introduction
Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

Why models
Mass balance
In this talk..

� Mathematical model based on mass balance conservation

⇒Differential equations

F1A B

F2

1

1 2

dA
F

dt
dB

F F
dt

= −

= −

Introduction
Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

Why models

Mass balance
In this talk..

�Use R to solve mathematical mass balance models

�Three different types of models/solutions – three main packages

�Integration (deSolve)
�Steady-state solution (rootSolve)
�Least-squares solutions (limSolve)

What was available + what is new

�Two examples

�HIV model (dynamic / steady-state)
�Deep-water coral food web

Introduction
Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

Why models
Mass balance

In this talk..

Example 1: hiv dynamics

Large interest in viral infection
�Human disease
�Marine animals, algae, bacteria are affected

⇒Important role in biogeochemical cycles

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics
Solving dynamic differential equations
Differential equations in R
The HIV/AIDS model in R

dH
H H V

dt
dI

H V I
dt
dV

n I c V H V
dt

λ ρ β

β δ

δ β

= − ⋅ − ⋅ ⋅

= ⋅ ⋅ − ⋅

= ⋅ ⋅ − ⋅ − ⋅ ⋅

t = time
n,c,… = parameter
H,I,V = state variable

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics
Solving dynamic differential equations
Differential equations in R
The HIV/AIDS model in R

For t > t 0()C t

Model formulation:

Derivative

Initial condition

()C t

0t t

??

0

(, , ,)

0t

dC
f C t u

dt
C C=

= Θ

=

Model solution:
integration

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics

Solving dynamic differential equations
Differential equations in R
The HIV/AIDS model in R

Previously on CRAN: odesolve (Setzer 2001)

�Nice interface

�Two integration routines:
�RungeKutta, not meant to be used
�lsoda, good for small, simple models

�Models implemented in R or compiled code DLL (fast)

BUT:

�Only simplest Ordinary Differential Equations (ODE)
�not flexible,
�not suited for large problems

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics
Solving dynamic differential equations

Differential equations in R
The HIV/AIDS model in R

Now on CRAN:

�deSolve (Soetaert, Petzoldt, Setzer)
�Initial value problems
�> 10 integration routines

�Simple and complex ODE
�Differential algebraic equations (DAE)
�Partial differential equations: (PDE)

�1-D, 2-D, 3-D problems

�Flexible; Sparse, banded, full Jacobian
�Medium-sized to large problems (up to 80000 state variables)

�bvpSolve (Soetaert)
�Boundary value problems
�2 solution methods

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics
Solving dynamic differential equations

Differential equations in R
The HIV/AIDS model in R

hiv<- function(time, y, pars) {
with (as.list(c(pars,y)), {

dH <- lam -rho*H - bet*H*V
dI <- bet*H*V -delt*I
dV <- n*delt*I - c*V - bet*H*V

return(list(c(dH, dI, dV)))
})

}

y <- c(H= 100, I = 150, V = 50000)

times <- 0:60

pars<- c(bet=0.00002,rho=0.15,delt=0.55,c=5.5,lam=80,n=900)

out <- ode(y=y, parms=pars, times=times, func=hiv)

plot(out[,”time”], out[,”H”])

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

HIV dynamics
Solving dynamic differential equations
Initial value differential equations in R

The HIV/AIDS model in R

0 10 20 30 40 50 60

10
0

20
0

30
0

Healthy cells

time

-

0 10 20 30 40 50 60

40
80

12
0

Infected cells

time

-

0 10 20 30 40 50 60

10
00

0
30

00
0

50
00

0

Viral load

time

-

Problem: dynamic models require many data:

�Knowledge of initial values
�Time-variable forcing functions (external data, u)

=> Not always available

Solution:
�Assume steady-state

=>Systems of nonlinear equations

�Calculate stability properties

Introduction
Dynamic differential equations

Steady-state solutions
Linear models
History/Outlook

Simplification may be necessary
Implementation in R
Root solvers, steady-states

(, , , ,...) (, , , ,...)i jt t
dC

f C u f C u
dt

= Θ − Θ∑ ∑

0 (, ,...) (, ,...)i jf C f C= Θ − Θ∑ ∑

Previously on CRAN:

�uniroot solves for one root of one nonlinear equation within interval

We need:
�Find all roots within one interval

�Functions to estimate gradient matrices, Jacobians (stability)

�Solve roots of n nonlinear equations (steady-state analysis)

Introduction
Dynamic differential equations

Steady-state solutions
Linear models
History/Outlook

Simplification may be necessary
Implementation in R

Root solvers, steady-states, stability

Now on CRAN:

�rootSolve (Soetaert)

�uniroot.all , jacobian: stability analysis
�multiroot : roots of general nonlinear functions (Newton-Raphson)

�steady, steady.1D, steady.2D, steady.3D, runsteady :
steady-state solvers

�Fully compatible with integration routines from deSolve
�Suited for large problems (~100 000 equations)
�Sparse, banded, full Jacobian

Introduction
Dynamic differential equations

Steady-state solutions
Linear models
History/Outlook

Simplification may be necessary
Implementation in R

Root solvers, steady-states, stability

STD <- runsteady(y=y, func=hiv, parms=pars)

eigen(jacobian.full (y=STD$y, func=hiv, parms=pars))$values

Problem:
�mechanistic nonlinear models have many parameters (θ):

⇒Many are unknown
⇒need to be fitted to data
⇒Data not always available

�nonlinear equations may not be known

Solution:

�Avoid nonlinear equations
�No parameters
�The sources and sinks (fi->j) are the unknowns

⇒Linear model

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web
Linear inverse models
Linear inverse model solutions
Solving LIM in R
Implementing LIM in R

(, , ,...) (, , ,...)i j

dC
f C t f C t

dt
= Θ − Θ∑ ∑

j
i j j k

Sources Sinks

dC
f f

dt

d

dt

→ →= −

= ⋅

∑ ∑

C
A x

123 14243

Example 2: Deep-water coral food webs

Corals are commonly found at ~ 800-1000 m water depth.

A large number of animals are living in the coral reefs

It is very expensive to do research there

⇒Data are very fragmentary

⇒Who is eating who? How much do they eat?

⇒A model is needed to see the global picture

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary

Deep-water coral food web
Linear inverse models
Linear inverse model solutions
Solving LIM in R
Implementing LIM in R

HERMES

Problem:

number of equations <<< number of unknowns (under determined)

Coral food web: 51 equations ~ 140 unknowns

⇒There is no unique solution
(~ fitting a straight line through one point)

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web

Linear inverse models
Linear inverse model solutions
Solving LIM in R
Implementing LIM in R

underdetermined

∞

Solution 1. Add data from other sources to equalities
=>achieve overdeterminacy (1 solution)

Solution 2. Data from other sources as “inequalities”

Ex = fequality equation:
(in situ data, mass balance)

inequality equation:
(literature data, physiological constraints,..)

≥Gx h

linear functions numerical data

10 1

n

f
a b C

f

 
−    ⋅ ≥    

    
 

M
M M

food web flows

» the matrix equations are solved for the vector with food web flows

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web

Linear inverse models
Linear inverse model solutions
Solving LIM in R
Implementing LIM in R

Parsimonious Ranges Random sampling

Ensemble of solutions

x
1

x
2

x
3

x
1

x
2

x
3

BAC->MAC

MAC->DET

BAC->CO2

x 1

x
2

x
3

selects one

solution

estimate of flow

range

flow distribution

in ensemble

Dealing with the underdeterminacy:

Coral : Solution is a 140-dimensional SPACE!
⇒Within this space, every point equally likely

⇒3 different ways of solving:

Ex = f

hGx ≥

2

min

min()x

≈

∑

Ax b min()

max()

x

x

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web
Linear inverse models

Linear inverse model solutions
Solving LIM in R
Implementing LIM in R

Previously on CRAN
�solve.qp, (quadprog) : quadratic programming

�lp , (lpSolve) : linear programming

But:
�solve.qp tends to fail for some problems
�lp requires x to be positive (linear programming)
�lp and solve.qp are not compatible
�No monte carlo sampling of underdetermined systems
�Implementing large matrices: error-prone

min , ,≈ ≥Ax b Ex = f Gx h

min(), ,i ia x ≥∑ Ex = f Gx h

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web
Linear inverse models
Linear inverse model solutions

Solving Linear Inverse Models in R
Implementing LIM in R

Now on CRAN:

limSolve (Soetaert, van Oevelen, van den Meersche)
�least squares,
�linear programming,
�least distance programming
�xranges, xsample: range estimation and random sampling

LIM (Soetaert, van Oevelen)
�Models are specified in text files

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web
Linear inverse models
Linear inverse model solutions

Solving Linear Inverse Models in R
Implementing LIM in R

Introduction
Dynamic differential equations
Steady-state solutions

Linear models
History/Outlook

Simplification may be necessary
Deep-water coral food web
Linear inverse models
Linear inverse model solutions
Solving Linear Inverse Models in R

Implementing LIM in R

require(LIM)
coral.lim <- Setup(“coral.input")

Parsimonious <-Ldei(coral.lim)
Ranges <- Xranges(coral.lim)
Xs <- Xsample(coral.lim, iter=10000)

Plotranges(order(colMeans(Xs)),…)
…

Flow value (mmol C m−2d−1)
1x10−5 1x10−3 1x10−1 1x101

BIO->URC
SUS->URC

OMN->URC
HES->CRA
POL->STA
POL->EXP
HES->EXP
SPO->URC

PHY_w->STA
OMN->CRA
HYD->CRA
SUS->CRA
LIM->CRA
BIO->STA
LIM->STA
BIO->CRA

DET_w->CRA
PHY_w->CRA

SPO->STA
CRA->DIC
CRI->DIC

STA->EXP
ZOO_w->LIM
CRI->DET_w
STA->DET_w
PHY_w->CRI

PHY_w->HES
OMN->FIS

OMN->EXP
ZOO_w->OMN
PHY_w->POL
DET_w->POL

BIO->HES
DET_w->OMN
ZOO_w->HES

ASP->DIC
ASP->EXP

DET_w->LIM
LIM->DET_w
PHY_w->LIM
PHY_w->ASP
ZOO_w->POL
DET_w->ASP

OMN->DET_w
HYD->DIC
EUN->EXP

ASP->DET_w
DET_w->HYD

DET_w->BIV
BIV->EXP
SUS->FIS

BIV->DET_w
FIS->EXP

FIS->DET_w
SUS->DIC

CWC->DIC
ZOO_w->CWC

SPO->EXP
DET_w->SPO

BAC_s->INF
PHY_w->SPO

INF->EXP
PHY_w->SUS
CWC->DET_w

ZOO_w->FIS
BAC_s->DET_s

DET_s->INF
PHY_w->BIO
BAC_s->DIC

DET_s->BAC_s

ZOO_w->CRI
DET_w->CRI
HYD->URC
POL->CRA
HES->STA
POL->FIS
HES->FIS
POL->HES
SPO->CRA
ASP->CRA
DET_w->STA
CRI->CRA
ZOO_w->CRA
BIV->CRA
BIV->STA
ZOO_w->STA
OMN->STA
ASP->STA
URC->STA
CRI->EXP
STA->DIC
CRA->EXP
PHY_w->EUN
DET_w->EUN
CRA->DET_w
ZOO_w->BIV
URC->DET_w
URC->EXP
DET_w->HES
HES->DIC
LIM->EXP
LIM->DIC
HES->URC
POL->DIC
OMN->DIC
DET_s->BUR
URC->DIC
PHY_w->OMN
POL->URC
BIO->OMN
HES->DET_w
BIO->POL
ZOO_w->ASP
ZOO_w->HYD
HYD->EXP
EUN->DIC
POL->DET_w
PHY_w->HYD
HYD->DET_w
BIV->DIC
EUN->DET_w
SUS->EXP
ZOO_w->EUN
CWC->BIO
DET_w->SUS
ZOO_w->SUS
PHY_w->BIV
FIS->DIC
SPO->DIC
DET_w->CWC
PHY_w->CWC
INF->DIC
SUS->DET_w
ZOO_w->SPO
SPO->DET_w
INF->DET_s
BIO->EXP
DET_w->BIO
BIO->DIC
DET_w->DET_sFlowto(CO2) = 100

coral -> CO2 = [0.2,0.4] * Flowto(coral)
…

“coral.input”

re
a
lity

co
m
p
le
x
ity

d
a
ta
 a
v
a
ila
b
ility

input output

j
i j j k

dC
flow flow

dt → →= −∑ ∑
64748 64748LinearLinear

limSolvelimSolve

LIMLIM

SteadySteady--statestate

nonlinearnonlinear

rootSolverootSolve

DynamicDynamic

deSolvedeSolve

(, ,...) (, ,..)0 .i jf C f C= Θ − Θ∑ ∑

(, , , ,...) (, , , ,...)i jt t
dC

f C u f C u
dt

= Θ − Θ∑ ∑

Introduction

Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

Why models
Mass balance

In this talk..

F1A B

F2

Introduction
Dynamic differential equations
Steady-state solutions
Linear models

History/Outlook

History
Future

�Before 2006: Fortran, Excel, Powerpoint, Sigmaplot, own software

�End 2005. First acquaintance with R

�End 2006. Decision to use R for our scientific programming / graphics

⇒Implement functions not yet available

Introduction
Dynamic differential equations
Steady-state solutions
Linear models

History/Outlook

History

Now and Future

�Three years later...

⇒Basic solution methods available
⇒5 Solver packages (deSolve, rootSolve, bvpSolve, limSolve, LIM)
⇒Specific model applications

�Reactive transport models, (ReacTran)
⇒rivers, estuaries, lakes, sediments

�Toxicology, (ToxWebs)
⇒ toxic substances in marine organisms

�Ecological network analysis (NetIndices)

�….

Introduction
Dynamic differential equations
Steady-state solutions
Linear models
History/Outlook

History
Now and Future

Soetaert K. and P.M.J. Herman, 2009. A practical guide to
ecological modelling – using R as a simulation platform.
Springer, 372 pp

Soetaert, K., van Oevelen, D., 2009. Modeling food web
interactions in benthic deep-sea ecosystems: a practical guide.
Oceanography (22) 1: 130-145.

THANK YOU

….

