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Introduction Why models

Natural systems are very complex

U Scientists want to understand this complexity and make quantitative

predictions @

Model = simplifications of the complex natural environment

UTest model to data

UQuantification of unmeasured processes

UBudgetting, interpolation in time/space
Q... @

Prediction of future behavior



Introduction

Mass balance

L Mathematical model based on mass balance conservation

dA

i dt
E =F1-F2
F2 dt

— Differential equations



Introduction

In this talk..

Use R to solve mathematical mass balance models
dThree different types of models/solutions — three main packages
dintegration (deSolve)
Steady-state solution (rootSolve)
LLeast-squares solutions (limSolve)
What was available + what is new

dTwo examples

UHIV model (dynamic / steady-state)
Deep-water coral food web



HIV dynamics

Dynamic differential equations

Example 1: hiv dynamics

Large interest in viral infection
LHuman disease
UdMarine animals, algae, bacteria are affected
—=Important role in biogeochemical cycles



Dynamic differential equations

HLIV-ol
dt d
d—V:nBS[II -clV-FH NV
dt
t = time
n,c,... = parameter

H,l,V = state variable
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Dynamic differential equations Solving dynamic differential equations

Model formulation:

Derivative Z—? = f(0,C,t,u)
Initial condition C._,=CO0
Model solution: C (t) For t>t,

integration

C(t)y -




Dynamic differential equations

Differential equations in R

Previously on CRAN: odesolve (Setzer 2001)
Nice interface
dTwo integration routines:
URungeKutta, not meant to be used
Ulsoda, good for small, simple models
Models implemented in R or compiled code DLL (fast)
BUT:
dOnly simplest Ordinary Differential Equations (ODE)

Unot flexible,
Unot suited for large problems



Dynamic differential equations

Differential equations in R

Now on CRAN:

UdeSolve (Soetaert, Petzoldt, Setzer)
dinitial value problems
> 10 integration routines

dSimple and complex ODE

dDifferential algebraic equations (DAE)

UPartial differential equations: (PDE)
4d1-D, 2-D, 3-D problems

UFlexible; Sparse, banded, full Jacobian
UMedium-sized to large problems (up to 80000 state variables)

dbvpSolve (Soetaert)
Boundary value problems
2 solution methods



Dynamic differential equations

The HIV/AIDS model in R

hiv<- function( time, y, pars) {
with (as.list(c(pars,y)), {

dH <- Tam -rho*H - bet*H*V Healthy cells

dI <- bet*H*V -delt*I
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dv <- n*delt*I - c*V - bet*H*V
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return( list(c(dH, dI, dv)) )
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y <- c¢(H= 100, I = 150, VvV = 50000)
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times <- 0:60
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pars<- c(bet=0.00002,rho=0.15,delt=0.55,c=5.5,1am=80,n=900)
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out <- ode(y=y, parms=pars, times=times, func=hiv)
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plot(out[,”time”], out[,”H”]) Viral load
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Simplification may be necessary

Steady-state solutions

Problem: dynamic models require many data:

Oc'j_f =Y £(C.0,tLu,..)- Y £,(C,0,t,u,.)

UKnowledge of initial values
U Time-variable forcing functions (external data, u)

=> Not always available

Solution: 0=) f(C,0,..)-> f.(C0,.)

LAssume steady-state
=>Systems of nonlinear equations

L Calculate stability properties



Steady-state solutions Root solvers, steady-states, stability

Previously on CRAN:

Huniroot solves for one root of one nonlinear equation within interval
We need:

QFind all roots within one interval

UFunctions to estimate gradient matrices, Jacobians (stability)

Solve roots of n nonlinear equations (steady-state analysis)



Steady-state solutions Root solvers, steady-states, stability

Now on CRAN:

drootSolve (Soetaert)

Quniroot.all , jacobian: stability analysis
dmultiroot : roots of general nonlinear functions (Newton-Raphson)

Usteady, steady.1D, steady.2D, steady.3D, runsteady :
steady-state solvers
QFully compatible with integration routines from deSolve
L Suited for large problems (=100 000 equations)
Sparse, banded, full Jacobian

STD <- runsteady(y=y, func=hiv, parms=pars)

eigen( jacobian.full (y=STD$y, func=hiv, parms=pars) )$values



Simplification may be necessary

Linear models

Problem:
mechanistic nonlinear models have many parameters (0):

—Many are unknown d_C _ ~
—need to be fitted to data dt Z (C,01..) Z f;(C,0,t,...)

—Data not always available

Unonlinear equations may not be known

Solution:
dC.
i i i —L=3f =t
JAvoid nonlinear equations da & =) & 1=K
No parameters Sources Sinks

UThe sources and sinks (fis)) are the unknowns d_C = A [X
=Linear model dt



Deep-water coral food web

Linear models @

HERMES

Example 2: Deep-water coral food wehs

Corals are commonly found at ~ 800-1000 m water depth. 3

A large number of animals are living in the coral reefs

It is very expensive to do research there
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Linear inverse models

Linear models

Problem:

number of equations <<< number of unknowns (under determined)

underdetermined

Coral food web: 51 equations ~ 140 unknowns

R
S

—There is no unique solution
(~ fitting a straight line through one point)

Solution 1. Add data from other sources to equalities
=>achieve overdeterminacy (1 solution)

Solution 2. Data from other sources as “inequalities”



Linear inverse models

Linear models

equality equation: Ex =f
(in situ data, mass balance)
inequality equation: Gx=h
(literature data, physiological constraints,..)

_linear functions numerical data

(f )
a -b 0 ! C1
[ > | .

kn)

food web flows

» the matrix equations are solved for the vector with food web flows



Linear models Linear inverse model solutions

Dealing with the underdeterminacy: Ex =f

Coral : Solution is a 140-dimensional SPACE! Gx=>h
—=Within this space, every point equally likely

Ensemble of solutions

=3 different ways of solving:

Parsimonious Ranges Random sampling
4 N\ N\ ()
» . :
\§ J
selects one estimate of flow flow distribution
solution range in ensemble
min||Ax = b| min(x)

min(>_ x%) max(X)



Linear models

Solving Linear Inverse Models in R

Previously on CRAN
Usolve.gp, (quadprog) : quadratic programming

min|Ax=b|,Ex=f,Gx=h

dlp, (IpSolve) : linear programming
min()_ax),Ex=f,Gxzh

But:
Usolve.gp tends to fail for some problems
dlp requires x to be positive (linear programming)
dlp and solve.gp are not compatible
LNo monte carlo sampling of underdetermined systems
dimplementing large matrices: error-prone



Linear models

Solving Linear Inverse Models in R

Now on CRAN:

limSolve (Soetaert, van Oevelen, van den Meersche)
Uleast squares,
dlinear programming,
Uleast distance programming
Uxranges, xsample: range estimation and random sampling

LIM (Soetaert, van Oevelen)
Models are specified in text files



Linear models

Implementing LIM in R
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Dynamic differential equations :
Steady-state solutions In this talk..
Linear models CE1

F2

input output
Linear dC. ¢ S . A \
limSolve d_tj = Z flow _, _Z flow,
LIM
Steady-state 0=> f(C,0,..)-> f.(C,0,..)
nonlinear &
rootSolve ;
0,
Dynamic € _Stcotu.)-3f(Cot =
deSolve E—Z i( , O, ,U,...) Z j( , O, ,U,...) E"




History

History/Outlook

Before 2006: Fortran, Excel, Powerpoint, Sigmaplot, own software
UENd 2005. First acquaintance with R
UENd 2006. Decision to use R for our scientific programming / graphics

=Implement functions not yet available



Now and Future

History/Outlook

dThree years later...
—Basic solution methods available
=5 Solver packages (deSolve, rootSolve, bvpSolve, limSolve, LIM)
= Specific model applications

UReactive transport models, (ReacTran)
= rivers, estuaries, lakes, sediments

dToxicology, (ToxWebs)
= toxic substances in marine organisms

LEcological network analysis (Netindices)

a...



THANK YOU
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