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Notation and problems

Ian Dryden’s R-package — shapes

Statistical shape analysis

Version: 1.1-3

http://www.maths.nott.ac.uk/ ild/shapes

Generalized Procrustes Analysis (GPA), Relative Warp
Analysis (RWA), statistical inference

Thin-plate spline grids, 3D visualization via libraries
scatterplot3d and rgl
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Notation and problems

New R-package — GMM

Statistical shape analysis

upcoming in autumn 2009

http://www.defm.fmph.uniba.sk/ katina/katina.htm

sliding of semilandmarks on open and closed curves
and surfaces, missing value estimation, affine and
non-affine component, unwarping, Multivariate Multiple
Linear Regression Model of shape on size, Relative Warp
Analysis, shape-space PCA, form-space PCA ,
size-adjusted PCA, 2-block PLS (two shape blocks, one
shape block and one block of external variables), analysis
of asymmetry, statistical inference

GMM toolbox (Hull/York Medical School, University of
Vienna)
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Introduction

xj ∈ R, k-vector x

yj ∈ R, k-vector y

x j =
(

x (1)
j , x (2)

j

)T
∈ R

2, k × 2 matrix X

y j =
(

y (1)
j , y (2)

j

)T
∈ R

2, k × 2 matrix Y

j = 1, 2, . . . k
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Example 1 – shape data

Data

Coquerelle M, Bookstein FL, Braga J, Halazonetis DJ,
Katina S , Weber GW, 2009. Visualizing mandibular shape
changes of modern humans and chimpanzees (Pan
troglodytes) from fetal life to the complete eruption of the
deciduous dentition. The Anatomical Record (accepted)

computed tomographies (CT) of 151 modern humans
(78 females and 73 males) of mixed ethnicity, living in
France, from birth to adulthood. [Pellegrin Hospital
(Bordeaux), Necker Hospital (Paris) and Clinique Pasteur
(Toulouse)]
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Example 1 – shape data

Data

each mandibular surface was reconstructed from the
CT-scans via the software package Amira (Mercury
Computer Systems, Chelmsford, MA)

open-source software Edgewarp3D (Bookstein & Green
2002), a 3D-template of 415 landmarks and
semilandmarks was created to measure the mandibular
surface and was warped onto each mandible
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NCS for bivariate data

Interpolation model

Consider a NCS given by

f (x) = c + ax +
k

∑

j=1

wjφj (x) , j = 1, 2, . . . k ,

where

xj are the knots, φj (x) = φ
(

x−xj
)

= 1
12

∣

∣x − xj
∣

∣

3 with the
constraints

∑k
j=1 wj =

∑k
j=1 wjxj = 0, f ′′ and f ′′′ are both

zero outside the interval [x1, xk ]

function φ (x) = 1
12 |x |3 is a continuous function known as a

radial (nodal) basis function (Jackson 1989)
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NCS for bivariate data

Interpolation model

Let (S)ij = φj(xi) = φ(xi − xj) = 1
12

∣

∣xi − xj
∣

∣

3,
w = (w1, . . . wk )T

constraint (1k , x)T w = 0

NCS interpolation to the data
(

xj , yj
)





y
0
0



 =





S 1k x
1T

k 0 0
xT 0 0









w
c
a



 , (1)

where xk×1 = (x1, . . . xk )T and yk×1=(y1, y2, . . . yk )T
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NCS for bivariate data

Interpolation model

Let matrix L be defined as

L =





S 1k x
1T

k 0 0
xT 0 0





inverse of L is equal to

L−1=

(

L11
k×k L12

k×2
L21

2×k L22
2×2

)
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NCS for bivariate data

Interpolation model

bending energy matrix – k × k matrix Be = L11

constrains of this matrix 1T
k Be = 0, xT Be = 0, so the rank

of the Be is k − 2

w = Bey

(c, a)T = L21y

J (f ) = wT Sw = yT Bey
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NCS for bivariate data

Data pre-processing

SVD of Xc = ΓΛΓ
T =

∑2
j=1 λjγjγ

T
j , Xc = X − 1kxT (Mardia

et al. 2000) [principal component analysis ]

the 1th principal component of X is equal to z1 = Xcγ1,
where γ1 is the 1th column of Γ, and z1j , j = 1, 2, ...k are
principal component scores of j th landmark (z1j is j th
element of k-vector z1)

re-ordering of the rows of X is done based on the ranks of
z1j in z1
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NCS for bivariate data

Data pre-processing

SVD of Ddc (Gower 1966) [principal coordinate analysis ]

D1 is k × k matrix of squared interlandmark Euklidean
distances, D2 = −1

2D1 and

Ddc = D2 −
1
k

1k1T
k D2 −

1
k

D21k1T
k +

1
k2 1k1T

k D21k1T
k

doubly centered (both row- and column-centered)
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NCS for bivariate data

Modified interpolation model

chordal distance d (j)
ch of the rows j − 1 and j of (x, y),

j = 2, 3, ...k

cumulative chordal distance d (j)
cch =

∑j
i=2 d (i)

ch ,
j = 2, 3, ...k

d (j)
cch = dj , j = 1, 2, ...k , dcch = (d1, d2, ...dk )T , d1 = 0

NCS of x on dcch

NCS of y on dcch
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NCS for bivariate data

Data

For the purpose of re-sampling

21 digitized semilandmarks on the symphisis
XP,2 = (xP,21, xP,22), dcch,2 (subject No.2)

NCS of y = xP,21 on x = dcch,2

NCS of y = xP,22 on x = dcch,2
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Penalized LRM

Penalized linear regression model (LRM)

y j = f
(

x j
)

+ εj , j = 1, 2, . . . k ,

where x j , y j ∈ R
2, f = (f1, f2) ∈ D(2) (the class of

twice-differentiable, absolutely continuous functions f with
square integrable second derivative (Wahba 1990)),
fm:R2 → R, m = 1, 2

penalized sum of squares

Spen (f) =
k

∑

j=1

∥

∥y j − f(x j)
∥

∥

2
+ λJ (f)
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Penalized LRM

penalty

J (f) =
2

∑

m=1

∫ ∫

R2





∑

i,j

(

∂2fm
∂x (i)∂x (j)

)2


 dx (1)dx (2)

penalized least square estimator f̃ is defined to be the
minimizer of the functional Spen (f) over the class D(2) of fs,
where

f̃ = arg min
f∈D(2)

Spen (f)
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TPS for shape data

Interpolation model

Consider a TPS given by

fm (x) = cm + aT
mx+

k
∑

j=1

wjmφj (x)

f (x) = c + AT x + WT s (x) ,

where

c = (c1, c2)
T , A =(a1, a2), wm = (w1m, w2m, . . . wkm)T ,

m = 1, 2, W = (w1, w2), s (x)k×1 = [φ1 (x) , . . . φk (x)]T

function φ (x) = ‖x‖2
2 log

(

‖x‖2
2

)

is a continuous function

known as a radial (nodal) basis function (Jackson 1989)
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TPS for shape data

Interpolation model

(S)ij = φj (x i) = φ
(

x i−x j
)

, i , j = 1, 2, ...k , ∀ ‖x‖2 > 0

constraint
(

1k
...X

)T

W = 0

TPS interpolation to the data
(

x j , y j
)





Y
0
0



 =





S 1k X
1T

k 0 0
XT 0 0









W
cT

A



 , (2)

where Yk×2 = (y1, . . . yk )T and Xk×2 = (x1, . . . xk )T
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TPS for shape data

Interpolation model

Let matrix L be defined as

L =





S 1k X
1T

k 0 0
XT 0 0





inverse of L is equal to

L−1=

(

L11
k×k L12

k×3
L21

3×k L22
3×3

)
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TPS for shape data

Interpolation model

bending energy matrix – k × k matrix Be = L11

constrains of this matrix 1T
k Be = 0, XT Be = 0, so the rank

of the Be is k − 2

W = BeY
(

c, AT
)T

= L21Y

J (f) = tr(WT SW) = tr(YT BeY)
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TPS relaxation along curves

Data
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TPS relaxation along curves

Data

For the purpose of relaxation

21 digitized semilandmarks on the symphisis from subject
No.2

its Procrustes shape coordinates Y = XP,2 were relaxed
onto Procrustes shape coordinates X = XP,1 of subject
No.1, seeking the configuration Yr
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TPS relaxation along curves

Let Yk×2 = (y1, . . . yk )T be configuration matrix with the

rows y j=
(

y (1)
j , y (2)

j

)T

y(r)
j is free to slid away from their old position y j along the

tangent directions u j =
(

u(1)
j , u(2)

j

)T
with ‖u‖2 = 1

new position y (r)
j = y j + tju j

tangent directions u j =
y j+1−y j−1

‖y j+1−y j−1‖2

U is a matrix of 2k rows and k columns in which the (j , j)th
entry is u(1)

j and (k + j , j)th entry is u(2)
j , otherwise zeros
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TPS relaxation along curves

TPS relaxation along curves

yr = Vec(Yr ), B = diag(Be, Be), Be depends only on some
configuration X

yr = y + Ut

the task is now to minimize the form

yT
r By r = (y + Ut)T B (y + Ut)

setting the gradient of this expression to zero
straightforwardly generates the solution (Bookstein 1997)

t = −
(

UT BU
)−1

UT By
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TPS relaxation along curves

TPS relaxation along curves

Let the curve defined by y j be interpolated by cubic spline
or B-spline f̃ (De Boor (1972) or Eilers & Marx (1996)),
y j = (y (1)

j , y (2)
j )T ∈ f̃ , j = 1, 2, . . . k

re-sampled points y i = (y (1)
i , y (2)

i )T ∈ f̃ , i = 1, 2, . . . M
(M = 500) and M = {y1, y2, ...yM}

suppose that y(s)
j = (y (1)

sj , y (2)
sj )T ∈ f̃ (the rows of Ys) are

free to slid away from their old position y j along the curve f̃
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TPS relaxation along curves

J(ys) = yT
s By s, has to be minimized and yr is obtained as

a minimizer of J(ys) given by

yr = arg min
ys

J(ys) (3)

the minimization starts with substitution of y1 by y i ∈ M, ...
and ends with substitution of yk by y i ∈ M, where
y j , j = 1, 2, . . . k , are the rows of Y and i = 1, 2, . . . M:

y(r)
j =

(

arg min
ys

J (ys)

)

j,k+j
, (4)

where (j , k + j)th entry of ys is substituted by y(s)
i ∈ M for

j = 1, 2, . . . k ; i = 1, 2, . . . M, yr = Vec(Yr ) and y(r)
j are the

rows of Yr
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Results of form-space PCA
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PC1 plus

PC2 up
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