
Stefan Rüping, Michael Mock, Dennis Wegener
Dortmund, August 2008

Tutorial - Distributed Data Analysis using R

2

Intelligent Analysis and Information Systems

The Lecturers

Stefan Rüping

Michael Mock

Dennis Wegener

3

Intelligent Analysis and Information Systems

Goals of the tutorial

Get to know different concepts and applications of distributed systems

Get an overview of available R packages in the context of distributed computing

Introduction to the GridR package

See some real life examples

4

Intelligent Analysis and Information Systems

Outline & Timetable

9:00 – 9:15 Introduction

9:15 – 10:15 R in the Context of Distributed Systems

10:15 – 10:30 GridR Installation

10:30 – 11:00 Coffee Break

11:00 – 11:45 The GridR Package

11:45 – 12:15 Real-World Examples

12:15 – 12:30 Discussion

5

Intelligent Analysis and Information Systems

Introduction

Why Grid-R?

6

Intelligent Analysis and Information Systems

Some Trends in Technology and Society
Convergence

universal digital representation,
digital photos, MP3, web, podcasts, internet-tv

Ubiquitous Intelligent Systems
mobile phones and PDAs, RFID, sensor networks, embedded
systems

Users as Producers
web, wikipedia, blogs, podcasts, social software (Flickr,
del.icio.us, Upcoming)

Autonomous Agents
Trading agents (ebay, B2B), self-learning mail filters, virtual
opponents in games, autonomous robots

Need for state-of-the-art, rapid data analysis R

Need for easy integration and distribution Grid

7

Intelligent Analysis and Information Systems

What is the Grid?

Using a distributed system should be as easy as
plugging in a toaster

• No need to think about where electricity is
generated

• One type of plug works everywhere

Grid is about making distributed computing

• Easy
• Secure
• “sellable”

Related Buzzwords

• Cloud Computing
• Software as a Service
• Web 2.0 Ian Foster and Carl Kesselman: "The

Grid: Blueprint for a new computing
infrastructure"

8

Intelligent Analysis and Information Systems

Our History in Data Mining on the Grid

DataMiningGrid (EU 2004-2006) – Data Mining and
Grid Computing

SIMDAT (EU, 2004-2008) – Data Mining and Grid
Computing for Complex Industrial Applications

ACGT (EU 2005-2009) – Advancing Clinico-Genomic Trials on
Cancer: Open Grid Services for Improving Medical Knowledge
Discovery

9

Intelligent Analysis and Information Systems

The ACGT Project

Goal: to support clinico-genomic trials

Challenges
• Large data sets – terabytes of data
• Distributed data sets – multiple hospitals

and organizations involved in a trial
• Genomic data is very privacy-sensitive
• High computational demands
• Semantics

Approach
• Grid architecture for distributed data

management and security
• Ontologies for common semantics
• R / Bioconductor as workhorse for

analysis of genomic data

Uni Lund

SIVECO

Uni Oxford

Uni Madrid, Uni Malaga

Uni Amsterdam, Philips

FORTH, Uni HospCrete,
ICCS-NTU Athens, Biovista

Uni Hamburg, Uni HospSaarland, IFOMIS
Fraunhofer (IBMT, AiS), Uni Hannover

PSNC Poznan

J. Bordet Institute, Custodix, Uni Namur

INRIA, HealthGrid, ERCIM

SIB Lausanne

Uni Hokkaido

10

Intelligent Analysis and Information Systems

Portal

WF Enactor

Mediator

Base

DMS

WF Results

Login Wrapper

Grid R

Real-Life Example: Analysis of Clinico-Genomic Data

11

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing (1/5)

Using external resources: run big R script on
some server instead of own laptop

Trivial solution

• Remote login, or
• copy R script to server, run, copy results

back

Problems

• Interactive mode problematic
• Need to tranfer scripts
• Need to coordinate with other people on

server

script.R script.Rout

Quick tipp:
if this is all you need, on a linux
/unix machine the commands
ssh / scp, nohup and

screen may already do the
trick.

12

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing (2/5)

Using multiple resources

• Run n R scripts on n computers -
“embarrassingly easy parallelization”,
e.g. cross-validation, parameter-tuning,
…

• Run n distinct parts of one R script on n
computers – hard

Could start all parts by hand, but

• How to coordinate all servers?
• Need to generate n scripts
• Need to integrate results by hand

13

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing (3/5)

Using distributed data

• Access remote data sources
• Shipment of algorithms – bring R script to

the data, not vice versa
• Access multiple data sources

Security gets very tricky here

14

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing (4/5)

Multiple-User Collaboration

• Exchange data with colleagues
• Exchange code with colleagues

15

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing (5/5)

Setting up a large system

• R as small part of the architecture
• Provide interface to R for other

components
• Support data exchange format

Patient private data on this sideHospital wall
Only anonymized data on this side

CTMS BASEDICOM
Anonymized mirrors

of hospital DBs

ACGT ontology DB

Pending terms DB

Workflow repository
(RepoServices)

Service ontology DB

External ontologies

Data export tool
Pseudonym DB CAT: Custodix Anonymization Tool

Hospital DBs
CTMS BASE Hospital data

entry tool

DICOM

Workflow Editor/Enactor

Data Management Layer
Mediator

Public data
repositories

AE GEO

DataGrid
FileSystem

GridFTP/DMS

ACGT Trial Builder (ObTIMA)

ACGT
KD Tools R Prep BEA …

R
OS

O
S

Ontology Mapping Tool

Portal

Data Access Layer
Data Access Services Web Service

Data Access Service

16

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing

Using external resources
• Run big R script on some server instead of own laptop

Using multiple resources
• Run n R scripts on n computers - “embarrassingly easy parallelization”, e.g.

cross-validation, parameter-tuning, …
• Run n distinct parts of one R script on n computers Using distributed data

Access multiple data sources
• Shipment of algorithms – bring R script to the data, not vice versa

Multiple-User collaboration
• Exchange data and code with colleagues

Setting up a large system
• R as small part of the architecture

17

Intelligent Analysis and Information Systems

Outline & Timetable

9:00 – 9:15 Introduction

9:15 – 10:15 R in the context of Distributed Systems

10:15 – 10:30 GridR Installation

10:30 – 11:00 coffee break

11:00 – 11:45 The GridR package

11:45 – 12:15 Real world examples

12:15 – 12:30 Discussion

18

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• R-packages Rpvm, Rmpi

Shared workspaces

• R-package nsw

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, R-package gridR

19

Intelligent Analysis and Information Systems

Distributed Systems

Advantages

• Inherently redundant, potentially fault
tolerant

• Scalable, cheap, powerful
• Application driven distribution:

Computing nodes and data reside in
different locations

Complexity
• Exponential number of failure modes
• Concurrency, no global state or memory
• Heterogenous, dynamic
• Topology of the network influences

programming
• Programming model must integrate

communication

A distributed system is a collection of autonomous computing nodes connected by a
network that work on a common task.

models, algorithms and system software provide abstractions

that „hide“ the complexity

20

Intelligent Analysis and Information Systems

Characteristics of distributed systems

Partial Failure Property
• The failure of any component of the system does not lead to the failure of the complete

system

Leslie Lamport’s definition:“A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable.” as quoted in CACM, June
1992

System software introduces “transparancy”
• Failure transparency (partial failures are hidden)
• Location transparency (resources can be accessed as if they were local)
• Concurrency transparency (resources can be accessed as if there was only one user)
• …

System models define assumptions, under which distributed algorithms operate

21

Intelligent Analysis and Information Systems

Synchronous System Model

A (potentially unknown) number of processes p,q, …

Communicate by with send(msg, p) and recv(msg, p) primitives

Fixed message latencies

No message loss

No process failure

Process work in rounds in lock step
• Receive messages
• Do work
• Send messages

22

Intelligent Analysis and Information Systems

Asynchronous System Model

A (potentially unknown) number of processes p,q, …

Communicate by with send(msg, p) and recv(msg, p) primitives

Unknown message latencies

No message loss

No process failure

Process work in rounds, but not synchronized
• Receive messages
• Do work
• Send messages

23

Intelligent Analysis and Information Systems

Abstract Model for Group Communication

Property Meaning

Broadcast Messages are sent to a group of processes. All
processes in the group receive the same
messages

Ordering All messages are received in the same order in
all processes

...

24

Intelligent Analysis and Information Systems

Interference of group communication properties
Station 1 Station 2 Station 3

Broadcast 1

Broadcast 1

Re-transmission

Broadcast 2

ACK Tim
e

ACKACK

Station 2: BC 1 before BC 2, Station 3: BC 2 before BC 1

ordering is violated, more protocol mechanisms are
needed

Ommission
fault

25

Intelligent Analysis and Information Systems

Summary

Distributed systems offer scalable CPU and storage facilities

Distributed systems have no shared memory and are implemented on top
inherently unreliable communication

Abstract models of distributed systems provide easy to use programming
paradigms

These models are implemented by network communication protocols,
operating systems, middleware and language libraries

• message passing
• shared workspaces
• remote object invocations

26

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• Socket connections in R
• R-packages Rpvm, Rmpi

Shared workspaces

• R-package nsw

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, R-package gridR

27

Intelligent Analysis and Information Systems

Distributed systems with explicit message passing

Things that matter

Processes

Tcp/IP Messages

Host Names/Adresses

Port Numbers

...

Operating system provides
primitives for sending and
receiving messages between
nodes

28

Intelligent Analysis and Information Systems

Socket connections as messaging abstraction

Unix based stream abstraction

Sockets are 1:1 communication end-points

Networks connections can be read/written
like files

Host names/adresses identify computing
nodes

Port numbers identify connections

...

Host 129.25.4.31 Host grid2.iais.fraunhofer.de

port 13

a process a process

a network connection identified by port 13 on host grid2.iais.fraunhofer.de

Sockets

29

Intelligent Analysis and Information Systems

Socket connections in R (from R man pages)

Not run:
two R processes communicating via non-blocking sockets

R process 1
con1 <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, con1)
close(con1)

R process 2
con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)
while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}
�close(con2)�## End(Not run)

�

30

Intelligent Analysis and Information Systems

Evaluation of socket communication

Good

• Very flexible, can use cat and scan to transmit any R
object between different processes

• Supports text transmissions (Readlines, Writelines)
• No restrictions on when to communicate

Bad

• Processes must be started/stopped manually
• Addressing with hostnames and port numbers is very

tedious
• no group communication
• program structure hard to understand, mix of

computation and communication

31

Intelligent Analysis and Information Systems

R packages for explicit message passing

Approved standard interfaces for message passing for parallel computations

Different language bindings: Fortran, C, Phython, R, ...

PVM: Parallel Virtual Machine (http://www.csm.ornl.gov/pvm/)

MPI: Message Passing Interface (http://www-unix.mcs.anl.gov/mpi/)

Quite similar approaches, differences in details, CRAN recommends MPI

Packages can be mostly downloaded from CRAN: http://ftp5.gwdg.de/pub/misc/cran/web/packages/

Rpvm: interface to PVM
• Requires installation of PVM package on the system (See R package README, complex setup for

windows: http://www.csm.ornl.gov/pvm/NTport.html)
Rmpi: interface to MPI (http://www.stats.uwo.ca/faculty/yu/Rmpi/)

• Requires the installation of an MPI package on the system (see R package README, e.g. MPICH2 on
windows: http://www.mcs.anl.gov/research/projects/mpich2/)

• Rmpi tutorial (including examples): http://ace.acadiau.ca/math/ACMMaC/Rmpi/index.html

32

Intelligent Analysis and Information Systems

MPI Basic Features

Dynamic process management (usually, a master task spawns other, slave tasks)

Task IDs are used for addressing

Point-to-point communication:

• a task can send a message to another task
• a task can receive a message from another task

Task groups: Tasks can join/leave groups

• Group communication: a task can send a message to a group
• Synchronization: a task can receive messages from all group members

33

Intelligent Analysis and Information Systems

Rmpi basic functions (see
http://ace.acadiau.ca/math/ACMMaC/Rmpi/methods.html)

mpi.spawn.Rslaves([nslaves=#])
• This function spawns a number of slave processes to perform work.
• Slaves are numbered 1..n, the master has number 0

mpi.send.Robj(object,destnumber,tag)
• Send an R object to the slave process destnumber.
• This type of send must be processed by a call to mpi.recv.Robj in the receiving

process.

object <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())
• Receive an R object and assign it to “object”.
• Blocks until an object is received.

mpi.bcast.Robj2slave(object)
• This function broadcasts/pushes an object, or even a function, out to all the

slaves.

results <- mpi.remote.exec("R code")
• This causes all slave processes to run the R code, and return the result.

34

Intelligent Analysis and Information Systems

Rmpi example (see
http://ace.acadiau.ca/math/acmmac/Rmpi/brute_force.R)

Initialize the Rmpi environment
library("Rmpi")
It's 10-fold cross-validation.
we spawn 10 slaves
mpi.spawn.Rslaves(nslaves=10)
...
Function to be executed by the slaves
foldslave <- function() {

result <- # work on “thedata”
...
}

We're in the parent.
Create data set
thedata <- data.frame(y=y,x=x)

Now, send the data to the children
mpi.bcast.Robj2slave(thedata)
...

Send the function to the children
mpi.bcast.Robj2slave(foldslave)

Call the function in all the children,
and collect the results
rssresult <- mpi.remote.exec(foldslave())

plot the results
plot(apply(rssresult,1,mean))

close slaves and exit
mpi.close.Rslaves()
mpi.quit(save = "no")

35

Intelligent Analysis and Information Systems

Evaluation of explicit message passing with pvm, mpi

Good

• easy addressing of processes
• point-to-point and group operations
• No restrictions on when to communicate

Bad

• requires installation of pvm/mpi runtime systems
• message passing must be programmed explicitly
• program structure hard to understand, mix of

computation and communication

36

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• R-packages Rpvm, Rmpi

Shared workspaces

• Shared files and databases
• R-package nws

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, R-package gridR

37

Intelligent Analysis and Information Systems

Virtual global memory

Idea: the system software provides the illusion that the nodes of a distributed
system can access (read/write) a globally shared memory system

Various flavors
• DSM - Distributed Shared Memory
• TupleSpace (Linda, JavaSpace)
• Blackboard systems (Distributed AI)
• Process Images (Industrial automation)

Processes work, execute without explicit message passing, but exchange data and
synchronize themselves via the global memory

38

Intelligent Analysis and Information Systems

A virtual shared memory system

Each processor is provided with the
illusion to read/write all memory
locations in the network

39

Intelligent Analysis and Information Systems

Using a distributed file system as global memory

Host 1 and host 2 mount the same shared file
system from a file server

Process 1 opens a connection for writing and
writes data or R objects to the file

Process 2 opens the file for reading and reads
the output of process 1

Example (R manual)

• con <- file(” /files/user/myself/afile”,
"w") # open an output file connection

• �cat("TITLE extra line", "2 3 5 7", "", "11
13 17", file = con, sep = "\n")

• close(con)

Process 1 Process 2

Host 1 Host 2

/files/user/myself/afile

Distributed file
system

open file
connection for writing

open file
connection for readind

40

Intelligent Analysis and Information Systems

Using a central database system as global memory

Host 1 and host 2 access the same
database server with RODBC

http://cran.r-
project.org/web/packages/RODBC/index
.html

opening connection
• channel = odbcConnect(dsn, uid = "",

pwd = "", ...)
wiriting table

• sqlSave(data, sqltable)
reading table

• sqlFetch(channel, sqltable)

Process 1 Process 2

Host 1 Host 2

Database Server

open database table
for writing

open database
table for reading

41

Intelligent Analysis and Information Systems

Using a network workspace as global memory

Host 1 and host 2 access the same
network workspace server with NWS

NWS: NetWorkSpace (http://nws-
r.sourceforge.net/)

Examples: http://nws-
r.sourceforge.net/doc/nwsR-1.5.0.pdf

Can write and read individual R objects
into / from the shared workspace

blocking and non-blocking read

write/read several values sequentially on
the same R object (FIFO)

Process 1 Process 2

Host 1 Host 2

Network Workspace
Server

write R object read R object

42

Intelligent Analysis and Information Systems

NWS Basic Operations

ws = netWorkSpace(‘R space’)

• opens a connection to the shared workspace

nwsStore(ws, ‘x’, 1)

• creates an R object named x and store the value 1 in it

val = nwsFind(ws, ‘x’)

• reads the value of the R object x and stores it in val (here 1)
• blocks until x exists

val = nwsFindTry(ws, ‘x’) - non-blocking version, returns NULL if x is not found

val = nwsFetch(ws, ‘x’)

• same as nwsFind, but removes the value of x afterwards

val = nwsFetchTry(ws, ‘x’) - non-blocking version,

43

Intelligent Analysis and Information Systems

NWS Operations with sequential values
(http://nws-r.sourceforge.net/doc/nwsR-1.5.0.pdf)

> n = c(16, 19, 25, 22)

> for (x in n) {

+ nwsStore(ws, ‘biff’, x)

+ }
• writes the values 16,19,25,22 sequentially into the R object biff

> n = vector()

> i = 1

> while (!is.null(tmp <- nwsFetchTry(ws, ‘biff’) {

+ n[i] = tmp + i = i + 1

+ }

> n

[1] 16 19 25 22
• reads these values sequentially

44

Intelligent Analysis and Information Systems

Evaluation of global memory

Good

• easy to use
• good for sharing data
• synchronization possible (easy with NWS)

Bad

• file/database access is slow - only useful for large
data

• synchronization of tasks is difficult with files/database
• no direct support for parallel executions

(note: there is an extension of NWS called sleigh for
parallel jobs)

45

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• R-packages Rpvm, Rmpi,

Shared workspaces

• R-package nws

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, GridR

46

Intelligent Analysis and Information Systems

A Distributed System

Things that matter

Processes

Tcp/IP Messages

Host Names/Adresses

Port Numbers

...

The application developer is
disturbed by many nasty details

47

Intelligent Analysis and Information SystemsA Distributed object-oriented system

Rising the level of abstraction!

Things that matter

Objects

Methods

Object InvocationsBLACK
BOX

Data Data Data

The application developer
is relieved from many
nasty details

48

Intelligent Analysis and Information Systems

Applications are structured in objects

An object encapsulates data which can be accessed
by a set of operations (methods, procedures, services)

Objects interact with procedure calls, these can be
local or remote

Remote Procedure Calls (RPC)

Data

Data Data Data

Host 1 Host 2

RPC

An object

49

Intelligent Analysis and Information Systems

Advantages of the Remote Procedure Call

Location transparency: a remote object is invoked in the same way as a local
object. The location of the remote object is hidden to the application.

Language transparency: The objects can be programmed in different
programming languages, but still can invoke each other (even across different
operating systems)

Network transparency: All parameter/results (data) of a procedure called are
serialized and sent automatically over the network

50

Intelligent Analysis and Information Systems

Client Object

Language level
object invocation

IDL

Request Message

IDL (Interface Definition Language)
Server Object

Language level
object invocation

Language level
returnReply Message

Language level return

Application code system code

Application vs. system code in the RPC

wait

51

Intelligent Analysis and Information Systems

Examples for the remote procedure call modell

CORBA - Common Object Request Broker Architecture: the first object oriented RPC
standard, defined by the OMG in the 90‘s (IBM, Sun, HP, Microsoft, GMD, ... Über
300 Mitglieder)

DCOM - form Microsoft

Java - Single-Language System from Sun

.NET - successor of DCOM

SOAP - Simple Object Access Protocol for the Word Wide Web

Web-Services - Remote object invocations over SOAP using furhter Web-Standards

the most dominant and successful model in distributed systems - what about R ?

52

Intelligent Analysis and Information Systems

Rweb

Rweb: web based interface to R
(http://www.math.montana.edu/Rweb/)

Allows to connect to a remote R session
via a web-browser

Similar to a remote terminal functionality

useful for trying R without installing it

not useful (or intended) for distributed
computations

53

Intelligent Analysis and Information Systems

Rserve

Rserve: socket-based R server (http://rosuda.org/Rserve/)

A server runs R, a client can access the server via a client
library

Client libraries available for Java and C++ (and R)

Functionality is similar to loading R as library into a Java or
C++ program, but the R code is actually executed on a
remote machine

useful to integrate R-statistics into Java or C++

not useful (or intended) for distributed computations
Java Process Rserve

Host 1 Host 2

call R

results

54

Intelligent Analysis and Information Systems

The R Snow package

Simple Network of Workstations

Programming model similar to RPC, but
supports parallelism

Runs on top of PVM, MPI or directly on
socket connections

(http://www.sfu.ca/~sblay/R/snow.html)

Tutorial on
http://www.stat.uiowa.edu/~luke/talks/uiowa0
3.pdf

55

Intelligent Analysis and Information Systems

Snow Basic Functions

cl <- makeCluster(10)

• creates 10 slave processes

clusterCall(cl, exp, ...)

• evaluates exp on all slaves in cl

clusterApply(cl, list, func, ...)

• applies function func to list, one element
of the list is processed on one slave

Snow example follows in comparison with
GridR !

master
process

...

slave
processes

exp

exp

exp

exp

results

results

results

results

56

Intelligent Analysis and Information Systems

SNOW examples

Examples (from http://www.sfu.ca/~sblay/R/snow.html and R Help for package snow)

• cl <- makeCluster(c("localhost","localhost"), type = "SOCK")
• clusterApply(cl, 1:2, get("+"), 3)
• stopCluster(cl)
• Output:

[[1]]
[1] 4
[[2]]
[1] 5

57

Intelligent Analysis and Information Systems

Evaluation of remote procedure call

Good

• extremely easy to use
• widely accepted for distributed systems

Bad

• no direct support for parallel executions
• except for SNOW
• but SNOW does not integrate cluster and grid

management systems

58

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• R-packages Rpvm, Rmpi,

Shared workspaces

• R-package nws

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, GridR

59

Intelligent Analysis and Information Systems

Cluster computing

A cluster is a set of computers providing
computing and storage facilities in a
single network and a single
administration domain

Data is stored on database systems or
distributed file systems in the same
network

Authentification and data access control
is handled by the network administrator
using standard operating system
functionality

A cluster management system handles
job submissions and load balancing

Database Server Distributed file
system

Admininistrative domain

60

Intelligent Analysis and Information Systems

Condor cluster management system

http://www.cs.wisc.edu/condor/

Prominent and free management system for Unix and
Windows clusters

Handles job submission with load balancing: selects
automatically the node to which a job should be sent

Job descriptions allow easy submission of parallel jobs

61

Intelligent Analysis and Information Systems

Condor job description

Submit command: „condor_submit myApp.con“

runs the script App.sh using input test.data 3 times in
parallel on the cluster

####################
simple condor job description
####################

Executable = /home/user/myApp.sh
Universe = vanilla
input = test.data
output = myApp.out
error = myApp.error
Log = myApp.log

Queue 3

62

Intelligent Analysis and Information Systems

Grid computing

Grid computing provides parallel
computing and collaboration across
different organizational domains

Data is stored and computing clusters
reside in different administrative domains

Authentification and data access control
is handled according to unified
internet/grid standards

A grid management translates grid
standards to the local administrative
domain

Database Server Distributed file
system

Admininistrative domain

Database Server Distributed file
system

Admininistrative domain
Database ServerDistributed file

system
Admininistrative domain

Internet

63

Intelligent Analysis and Information Systems

Globus Toolkit (GT4) grid management system

http://www.globus.org/toolkit/

Prominent and free management system for Unix and
Windows grid integration

Handles across organizations over the internet
• job submission
• access to data including access control
• authentification

Job descriptions allow easy submission jobs

http://www.globus.org/toolkit/about.html

64

Intelligent Analysis and Information Systems

GT4 job description

Submit command:
„globusrun-ws -submit
f myJob.xml“

runs the application
my_echo on the
remote machine

<job>
<executable>my_echo</executable>
<directory>${GLOBUS_USER_HOME}</directory>
<argument>Hello</argument>
<argument>World!</argument>
<stdout>${GLOBUS_USER_HOME}/stdout</stdout>
<stderr>${GLOBUS_USER_HOME}/stderr</stderr>
<fileStageIn>

<transfer>
<sourceUrl>gsiftp://job.submitting.host:2811/bin/echo</sourceUrl>
<destinationUrl>file:///${GLOBUS_USER_HOME}/my_echo</destinationUrl>

</transfer>
</fileStageIn>
<fileStageOut>

<transfer>
<sourceUrl>file:///${GLOBUS_USER_HOME}/stdout</sourceUrl>
<destinationUrl>gsiftp://job.submitting.host:2811/tmp/stdout</destinationUrl>

</transfer>
</fileStageOut>

</job>

65

Intelligent Analysis and Information Systems

Part I - R in the context of distributed systems

Overview on distributed systems

Explicit message passing

• R-packages Rpvm, Rmpi,

Shared workspaces

• R-package nws

Remote object invocations and web-services

• R-packages Rserve, Rweb, Snow

Cluster- and grid-based computing

• Condor and Globus toolkit, GridR

• --> SUMMARY

66

Intelligent Analysis and Information Systems

Part I - Summary - Comparison of R packages

Rpvm Rmpi nws Rweb Rserve Snow GridR

complex parallel
algorithms X X
easy parallelization (X) X X
data sharing and
collaboration X X
Grid integration X X

67

Intelligent Analysis and Information Systems

GridR installation

Installation of GridR
• Download from ACGT website(?) / Copy the GridR package
• On Linux: run „R CMD install GridR.tgz“
• On Windows: extract archive and run „R CMD install GridR“
• you might need the Rtools (perl etc.):

http://www.murdoch-sutherland.com/Rtools/index.html
• For running the examples: Create a file

named „.gridR.conf“ in /home/user/ (Linux) or
C:\users\username\Documents (Windows)
with the following content:

Installation of Snow
• Install package with name „snow“ through the R package installer from CRAN

<coffee break>

<GRIDR>
<LOCALTMPDIR>D:\\tmp</LOCALTMPDIR>
<SERVICE>local</SERVICE>
<SSHKEY>D:\\tmp</SSHKEY>
<NFSDIR>D:\\tmp\\share</NFSDIR>
</GRIDR>

68

Intelligent Analysis and Information Systems

Part II - The GridR package

69

Intelligent Analysis and Information Systems

Outline & Timetable

9:00 – 9:15 Introduction

9:15 – 10:15 R in the Context of Distributed Systems

10:15 – 10:30 GridR Installation

10:30 – 11:00 Coffee Break

11:00 – 11:45 The GridR Package

11:45 – 12:15 Real-World Examples

12:15 – 12:30 Discussion

70

Intelligent Analysis and Information Systems

The GridR package - outline

Motivation - The R user‘s point of view

The GridR package development

Functions, Configuration and internal details

Parallelization of computational tasks – example scenes (GridR & Snow)

Collaboration among multiple users

71

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing

Using external resources

• Run big R script on some server instead of own laptop

Using multiple resources

• Run n R scripts on n computers - “embarrassingly easy parallelization”, e.g. cross-
validation, parameter-tuning, …

• Run n distinct parts of one R script on n computers - hard, not further discussed in this
presentation

Using distributed data

• Access multiple data sources
• Shipment of algorithms – bring R script to the data, not vice versa

Multiple-User Collaboration

• Exchange data and code with colleagues

Goal: Make this possible with GridR

72

Intelligent Analysis and Information Systems

GridR - Motivation

Primary Goal: Usability

• Parallel execution should not interfere with running R session
• R user should not need to know details of distributed computation (software,

standards, …)
• Transparent execution of any R code
• Support for all needs in a typical distributed computing scenario – here: analysis

of clinico-genomic data

Implementation Requirements

• No modification of R itself
• Independent of underlying distributed architecture

73

Intelligent Analysis and Information Systems

Motivation & process of development

Our approach: Compile an R package for computation in distributed environments
that is easy to use (from th R user‘s point of view)

Imagine there is an R function that does some kind of big computation

Process of thinking:
• Execute the function in the R session on the local machine

– Create a function process <- function (..) {..}
– Call it from the command promt: >process(..)

• Execute the function as own process on the local machine
– Store the function into an R script file process.R
– Launch an R process by calling System(„R CMD BATCH process.R“)

• Execute the function (manually) on a remote machine (e.g. via ssh)
– Copy the R script file to the remote machine
– Launch an R process on the remote machine by calling System(„ssh remotemachine R

CMD BATCH process.R“)

74

Intelligent Analysis and Information Systems

Motivation & process of development (cont.)

• Execute the function on a pool of remote machines (a Cluster, e.g. managed by
Condor)

– Create a job description for the cluster management system
– Copy the R script file and the job description to the cluster master remote machine
– Launch an R process as job on one of the remote machines by calling System(„ssh

remotemachine condor_submit process.condor“)
• Execute the function on a pool of remote machines that are not maintained by

yourself (Grid)
– Create a job description for the resource management system
– Contact a client of the resource management system
– Launch an R process …

More than one user

• share data and functions

75

Intelligent Analysis and Information Systems

Basic idea of execution with GridR

Goal:
• make use of the grid technology in a transparent way
• passing the functions to be executed in the grid as input predefined function

(grid.apply) in their local code
• make use of available R features & create a package (no changes in the core R

implementation)

Client R session

remote R process (computation)Remote
env.

apply(..) call
lock y (act. bind.)

f(x)

y=f(x) call

ycheck
(callback)

assign value to y
unlock y (act. bind.)

session still interactive

76

Intelligent Analysis and Information Systems

GridR – Functionality

Parallel function application
• grid.apply(“y”,f,x) computes y <- f(x) remotely
• A set of files is created for starting up the remote execution
• Control is directly returned to R session, user can continue work

Catching user errors
• GridR tries to analyze dependencies between f and functions and variables used by f to

automatically upload them together with R (check=TRUE)
• Errors thrown by missing data are caught, value is retrieved and computation is restarted

Client R session

remote R process (computation)
Remote

env.

apply(..) call
lock y (act. bind.)

f(x)

y=f(x) call

ycheck
(callback)

assign value to y
unlock y (act. bind.)

session still interactive

77

Intelligent Analysis and Information Systems

GridR – Functionality (cont.)

Locking
• User can not modify value of y while computation is running
• Avoids accidental overwriting of data (consistency of variables)
• Using R’s makeActiveBinding()

Client R session

remote R process (computation)Remote
env.

apply(..) call
lock y (act. bind.)

f(x)

y=f(x) call

ycheck
(callback)

assign value to y
unlock y (act. bind.)

session still interactive

78

Intelligent Analysis and Information Systems

GridR – Active Bindings

A variable is replaced by a function call

Predefined function handles the locking
system and allows working interactively
with variable

• When the variable is read:
function returns the value
associated to the variable (or an
error code if the variable is locked)

• When a value is assigned:
function is called with the value as
parameter for storage in an internal
structure

f <- local({
x <- 1
function(v) {

if (missing(v))
cat("get\n")

else {
cat("set\n")
x <<- v

}
x

}
})
makeActiveBinding("myVar", f, .GlobalEnv)
bindingIsActive("myVar", .GlobalEnv)
myVar
myVar <- 2
myVar

79

Intelligent Analysis and Information Systems

GridR – Functionality (cont.)

Automatic retrieval of results
• When remote instance’s computation is finished, value

of y is automatically loaded back into the running
session

• Using R’s task callbacks - functions that are executed
automatically by R after the user has issued a
command

Client R session

remote R process (computation)
Remote

env.

apply(..) call
lock y (act. bind.)

f(x)

y=f(x) call

ycheck
(callback)

assign value to y
unlock y (act. bind.)

session still interactive

cb <- function() {
function(...) {

cat("executing callback!\n")
return(TRUE)

}
}
add the callback
addTaskCallback(cb())

80

Intelligent Analysis and Information Systems

GridR interfaces

Different layers

Client

Multi-Core

Remote machines

Cluster (e.g. Condor)

Grid (e.g. GT4)

User‘s barrier

Institution‘s barrier

via ssh / web service / custom client

81

Intelligent Analysis and Information Systems

GridR interfaces – detail

Submission and execution modes:

local
• Execute a job on the local (multicore) machine

remote.ssh
• Send a job to a remote machine via ssh

condor.ssh
• Send a job to a Condor cluster via ssh

condor.ws
• Send a job to a Condor cluster via a web service

globus.ws
• Send a job to a GT4 GRAM via a web service

globus.cog
• Send a job to a GT4 GRAM via a client side cog-kit

acgt
• Send a job to the ACGT system

82

Intelligent Analysis and Information Systems

GridR configuration (init)

A set of parameters has to be specified (depending on the mode choosen)

• e.g., local and remote paths, shared dir, web service URIs, Myproxy info, etc.

These parameters can be either

• Passed when calling grid.init(..)
• Specified in a config file that is loaded automatically when calling grid.init(..)

Examples:

• grid.init(service=„globus.cog“,..)
• grid.init() + config file

<GRIDR>
<LOCALTMPDIR>/tmp/</LOCALTMPDIR>
<SERVICE>remote.ssh</SERVICE>
<SSHREMOTEDIR>/home/user/</SSHREMOTEDIR>
<SSHREMOTEIP>192.168.58.128</SSHREMOTEIP>
</GRIDR>

83

Intelligent Analysis and Information Systems

Process of executing a single R function with GridR

Function loading

• GridR functions are loaded from the GridR package into the workspace of the R
client

Grid initialization

• grid environment is initialized by calling the function grid.init(..)
– sets all needed settings for the client side components of the resource management

systems to contact (e.g., including the information on the Myproxy certificate in case
GT4 or Gridge are used as grid middleware)

– sets temporary directories to use on the remote execution machine(s)

Code writing

• The R code which is to be executed in the grid is written and wrapped, e.g., as
single R function in the local R environment

84

Intelligent Analysis and Information Systems

Process of execution

Client R session

local R process (manage remote computation)

remote R process (computation)

Multi-Core

Remote

Cluster

Grid

apply(y,f,x,..) call
lock y (act. bind.)

f(x)

f(x)

local.R remote.R

local.R

f(x) remote.R job.desc

middleware

remote.R

y=f(x) call

y

check
(callback)

assign value to y
unlock y (act. bind.)

session still interactive

85

Intelligent Analysis and Information Systems

Process of executing a single R function with GridR (cont.)

Grid submission – through grid.apply(..) the process of submission is started

• Function to be executed in the grid and the needed parameters are written into a file
(uniqueID-fx)

• R script which is executed on the remote machine is generated (uniqueID-RemoteScript.R)
• R script specifying the “workflow” on the client side is generated (uniqueID-LocalScript.R)
• The result variable y is locked
• The local script is executed as separate process in another R session and performs tasks

depending on the mode chosen (ssh, web service, cog-kit, etc.)

Client R session

local R process (manage remote computation)

apply(y,f,x,..) call
lock y (act. bind.)

f(x)

f(x)

local.R remote.R

local.R

session still interactive

86

Intelligent Analysis and Information Systems

Process of executing a single R function with GridR (cont.)
The local script performs in detail:
Stage-in phase - files needed for the job submission (uniqueID-fx and uniqueID-RemoteScript.R)
are uploaded to the grid
A job is generated - Resource management system takes care of

• staging files to the execution machine
• launching the processing remote R script (uniqueID-RemoteScript.R) on an execution

machine
– read in uniqueID-fx
– execute y=f(x)
– writes the result or errors into a result file (uniqueID-y.dat)

Client local R process (manage remote computation)

remote R process (computation)

Multi-Core

Remote

Cluster

Grid

local.R

f(x) remote.R job.descmiddleware

remote.R

y=f(x) call

y

87

Intelligent Analysis and Information Systems

Process of executing a single R function with GridR (cont.2)

Waiting for result – During remote
execution y is locked and the R client
checks frequently if the file y.dat was
created

• depending on the waiting mode:
– wait=TRUE: grid.apply(..) blocks until

the results are there
– wait=FALSE: user can use the console

and gets a message when the results
are there

Result processing
• Result file (uniqueID-y.dat) is

transferred back to the client
(Stage-out phase)

• Result file is loaded and exit status
checked

• value to y is assigned or error
information displayed

• y is unlocked

Client R session

local.R

remote.R

Multi-Core

Remote

Cluster

Grid

y

check
(callback)

assign value to y
unlock y (act. bind.)

88

Intelligent Analysis and Information Systems

GridR – important functions

grid.init

• Initializes setting necessary for the execution

grid.apply (y,f,param1, param2, wait=TRUE,check=FALSE, ..)

• Performs a remote execution of an R function; waits (grid.callback) or sets a lock
(grid.lock)

grid.waitForResult (varlist)

• Waits until all results are accessible (grid.isLocked, grid.callback)

89

Intelligent Analysis and Information Systems

GridR Example Scene – Shipping of algorithm 1/2

Simple learning task (locally):

Create normal 100x3 matrix

Create normal 10x3 test-matrix

Create vector length 100 (linear model with
noise)

Bind vector and matrix

Learn model - predict Y taking V1, V2 and V3
(column names of X) as input

Make a prediction with the learned model on
the test-matrix

Print out the prediction

X <- as.data.frame(array(rnorm(300),c(100,3)))

Xtest <- as.data.frame(array(rnorm(30),c(10,3)))

Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))

YX <- cbind(Y,X)

m <- lm(Y~V1+V2+V3,YX)

prediction = predict.lm(m,Xtest)

prediction

90

Intelligent Analysis and Information Systems

GridR Example Scene – Shipping of algorithm 2/2

Remote execution:

Create two functions
• Data generation
• Model learn and apply

Execute the functions in a way that
• The data is created remotely
• The algorithm for learning is shipped to

that data

generateData <- function() {
path <- "/tmp/dwegener_matrices.Rdata"
X <- as.data.frame(array(rnorm(300),c(100,3)))
Xtest <- as.data.frame(array(rnorm(30),c(10,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)
save(file=path,Xtest,Y,YX)
return(path)

}
learAndApplyModel <- function(path) {

load(path)
m <- lm(Y~V1+V2+V3,YX)
prediction = predict.lm(m,Xtest)
return(prediction)

}

library(GridR)
grid.init()
grid.apply("path",generateData,wait=TRUE)
grid.apply("prediction",learAndApplyModel,

path,check=FALSE)

91

Intelligent Analysis and Information Systems

SNOW Example Scene – Shipping of algorithm

Shipping – code is quite similar

library(snow)
cl <- makeCluster(c("localhost"), type = "SOCK")
path=clusterCall(cl,generateData)[[1]]
prediction=clusterCall(cl,learAndApplyModel,path)[[1]]
stopCluster(cl)

library(GridR)
grid.init()
grid.apply("path",generateData,wait=TRUE)
grid.apply("prediction",learAndApplyModel,

path,check=FALSE)

92

Intelligent Analysis and Information Systems

GridR Example Scene – Distributed CV 1/3

CV task CV task prepared for distributed execution

crossvalidate <- function(X,Y) {
YX <- cbind(Y,X)
err <-0
n <- nrow(X)
for (i in 1:10) {

YXtrain <- YX[which(1:n %% 10 != i-1),]
YXtest <- YX[which(1:n %% 10 == i-1),]
m <- lm(Y~V1+V2+V3, YXtrain)
p <- predict.lm(m,YXtest)
err <- err+mean((p-YXtest[,1])^2)

}
err <- err/10
return(err)

}
X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
err = crossvalidate(X,Y)

cv_single_fold <- function(i,n_fold,X,Y,YX) {
n <- nrow(X)
YXtrain <- YX[which(1:n %% n_fold != i-1),]
YXtest <- YX[which(1:n %% n_fold == i-1),]
m <- lm(Y~V1+V2+V3,YXtrain)
p <- predict.lm(m,YXtest)
err <- mean((p-YXtest[,1])^2)
return(err)

}
X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)
n_folds=10
err <-0
for(i in 1:n_folds) {

err <- err+cv_single_fold(i,n_folds,X,Y,YX)
}
err=err/n_folds

93

Intelligent Analysis and Information Systems

GridR Example Scene – Distributed CV 2/3

Crossvalidation task computed in
parallel

cv_single_fold <- function(i,n_fold,X,Y,YX) {
n <- nrow(X)
YXtrain <- YX[which(1:n %% n_fold != i-1),]
YXtest <- YX[which(1:n %% n_fold == i-1),]
m <- lm(Y~V1+V2+V3,YXtrain)
p <- predict.lm(m,YXtest)
err <- mean((p-YXtest[,1])^2)
return(err)

}

library(GridR)
grid.init()
X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)

n_folds=10
err <-0
vars=paste("tmp",1:n_folds,sep="")
for(i in 1:n_folds) {
grid.apply(vars[i],cv_single_fold,i,n_folds,X,Y,YX, wait=FALSE)

}

grid.waitForResult(vars)
for(i in 1:n_folds) {

err <- err+get(vars[i])
}
err=err/n_folds

94

Intelligent Analysis and Information Systems

GridR Example Scene – Distributed CV 3/3

Crossvalidation task computed in
parallel using parameter sweep

cv_single_fold <- function(i,n_fold,X,Y,YX) {
n <- nrow(X)
YXtrain <- YX[which(1:n %% n_fold != i-1),]
YXtest <- YX[which(1:n %% n_fold == i-1),]
m <- lm(Y~V1+V2+V3,YXtrain)
p <- predict.lm(m,YXtest)
err <- mean((p-YXtest[,1])^2)
return(err)

}

library(GridR)
grid.init(verbose=FALSE)

X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)
n_folds=10
err<-0

grid.apply("result",cv_single_fold,
c(1:n_folds),list(n_folds),list(X),list(Y),list(YX), batch=c(1),wait=TRUE)

for(i in 1:n_folds) {
err <- err+result[[i]][1]

}
err=err/n_folds

95

Intelligent Analysis and Information Systems

Snow Example Scene – Distributed CV

Distribution – code is quite similar
library(snow)
hosts=rep("localhost",10)
cl <- makeCluster(hosts, type = "SOCK")

X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)

n_folds=10
err <-0
result = clusterApply(cl, 1:n_folds,cv_single_fold,

n_folds,X,Y,YX)
stopCluster(cl)

for(i in 1:n_folds) {
err <- err+ result[[i]]

}
err=err/n_folds

library(GridR)
grid.init(verbose=FALSE)

X <- as.data.frame(array(rnorm(300),c(100,3)))
Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))
YX <- cbind(Y,X)

n_folds=10
err<-0
grid.apply("result",cv_single_fold,

c(1:n_folds),list(n_folds),list(X),list(Y),list(YX),
batch=c(1),wait=TRUE)

for(i in 1:n_folds) {
err <- err+result[[i]][1]

}
err=err/n_folds

96

Intelligent Analysis and Information Systems

GridR parallel

For expert users that know about the distributed environment

• Using the GridR client on server side
• Going through different layers with one submit
• Recursive implementation possible

library(GridR)
grid.init(..some params..)
calc1 <- function(a) {

library(GridR)
grid.init(..different params..)
calc2<-function(b) {return(2*b)}
grid.apply(„result2“,calc2,a)
result1<-result2+2
return(result1)

}
grid.apply(„result“,calc1)

calc1() on a special
machine

calc2() on a pool

97

Intelligent Analysis and Information Systems

Multi-user Collaboration

By using the same technology as for remote execution (callbacks and active bindings)
it is possible to

• Export variables in a file that is stored in a shared directory
• Automatically get the new value for a variable that was exported or updated by

another user

Enables easy sharing of data and functions across multiple R sessions on distributed
sites

During the GridR initialization: Specification of a shared directory

library(GridR)
grid.init()
x=5
grid.share("x")

98

Intelligent Analysis and Information Systems

The GridR package

License: GPL v2

Available at: ACGT homepage & CRAN (planned)

Functionality

• Remote execution
• Shipping
• Parallelization

Interfaces to

• SSH machines
• Condor clusters
• GT4 grid middleware

Limitations (currently): side effect output (e.g. plots)

99

Intelligent Analysis and Information Systems

PART III

100

Intelligent Analysis and Information Systems

Outline & Timetable

9:00 – 9:15 Introduction

9:15 – 10:15 R in the Context of Distributed Systems

10:15 – 10:30 GridR Installation

10:30 – 11:00 Coffee Break

11:00 – 11:45 The GridR Package

11:45 – 12:15 Real-World Examples

12:15 – 12:30 Discussion

101

Intelligent Analysis and Information Systems

Scenarios of Distributed Computing

Using external resources
• Run big R script on some server instead of own laptop

Using multiple resources
• Run n R scripts on n computers - “embarrassingly easy parallelization”, e.g.

cross-validation, parameter-tuning, …
• Run n distinct parts of one R script on n computers Using distributed data

Access multiple data sources
• Shipment of algorithms – bring R script to the data, not vice versa

Multiple-User collaboration
• Exchange data and code with colleagues

Setting up a large system
• R as small part of the architecture

102

Intelligent Analysis and Information Systems
The ACGT Virtual Organizations

Grid Portal

VVirtual OOrganizations
Grid Services Infrastructure
(VO Manag., Metadata, Registry,

Publishing, Query,
Invocation, Security, etc.)

Tool 1

Tool 2

Grid Data Service

Analytical
Services

Clinical
data Research

Center

Microarray

Grid Data
Service

Image

Tool 2

Tool 3

Research

Center
Analytical Services

Grid Data Service

Grid-Enabled
Client

Research
Center

Gene
Database

Protein
Database

Tool 3

Tool 4

Grid Data
Services

Analytical Services

Grid Data Service
Public data

& tools

Tool n

103

Intelligent Analysis and Information Systems

A platform that is

Service oriented

Ontology driven

Grid enabled

ACGT Architecture

104

Intelligent Analysis and Information Systems

GridR

Remote execution of R code
in the Grid.

New

• Wrapper to make R look
like generic ACGT service

• Interface to distributed
Data Management System
and Resource
Management System

• Interface to Meta Data
Repository

DMS
Client

Grid
Client

GridR

DMS

Execution
machine

Output files

Grid job

Stageout

Stagein

Helper files

GRMS

105

Intelligent Analysis and Information Systems

Extraction of

• Links from genes to deseases
• Links from genes to articles

Based on an database of relations between
concept

• Constructed via literature mining
techniques

Literature Mining

106

Intelligent Analysis and Information Systems

Clinico-Genomic Data

107

Intelligent Analysis and Information SystemsScenario: Farmer et al.

108

Intelligent Analysis and Information Systems

Use Case

Researcher are analysing data in R

Local Laptop
• R as user interface
• Development of algorithms
• Monitoring of Execution

Remote Grid Machine
• Data (~800 MB)
• Execution of algorithms

Transfer of algorithms & results only!

109

Intelligent Analysis and Information Systems

Execution Track of the Workflow

login

Portal

WF Enactor

Mediator

Base

DMS

Grid R

Literatur
miningWF Results

Web site Wrapper

110

Intelligent Analysis and Information Systems

GridR results

111

Intelligent Analysis and Information Systems

Workflows

Representation of the single steps of data processing

• Nodes = services
• Arrows = data flow

Necessary to control the complexity of distributed execution

Mediator

GridR 2

Literatur miningGridR 1

File reader

BASE
.cel

.sdml

.jpg

.txt .txt

.csv

112

Intelligent Analysis and Information Systems

ACGT Workflow Editor

Web based and integrated into
the ACGT portal.

Efficient discovery & browsing of
available tools and workflows.

Strive for “intelligent support” of
the user

Validation of the correctness
(Syntactic and Semantic) of the
analysis pipeline.

113

Intelligent Analysis and Information Systems

How Workflows Differ from Scripts

Limited language – no loops, no if-then-else

Limited data types – need to be defined in advance, or
are ambiguous

Limited complexity - good thing!

• Easy to execute
• Easy to check
• Easy to re-use

R is great for rapidly prototyping statistical analysis

Experience shows: problems arise when

• Analysis is to be re-executed
• Approach is to be transferred to new data

114

Intelligent Analysis and Information Systems

The Advantage of Workflows

Workflows allow an analysis of workflow properties

• “users who have used this workflow found also this workflow interesting”
• “in a workflow with these services, also these services were frequently used”
• “on this type of data, these workflows / Services are usually used”

Meta data repository

• Repository of
– R scripts and functions
– meta data (partially automatically generated from R help texts)
– use cases (data sets, literature, etc)

• Immediate execution of R scripts with GridR

115

Intelligent Analysis and Information Systems

Future Development of GridR

Automatic construction of Grid workflows from R command history

Executing functions / packages that are not installed locally

More fine-grained access rights in Grid workspace

R in a browser

R on a mobile device

116

Intelligent Analysis and Information Systems

And Now it’s Time For…

Questions and Discussion!

117

Intelligent Analysis and Information Systems

The End…

Thank you for your attention!

