Misc3d—A Package to Draw 3D Graphs

Dai Feng (The University of Iowa), Luke Tierney (The University of lowa)

[Abstract]

We introduce several functions from the misc3d package, includ-
ing functions to compute and render isosurfaces (three dimensional
contour plots) and functions to draw scenes consisting of one or
more surfaces described by triangular mesh data structures. Ren-
dering can be done using rgl, standard graphics, or grid graphics.
We describe the algorithms used to compute isosurfaces—the origi-
nal marching cubes algorithm and the marching cubes 33 algorithm
which solves the face and internal ambiguity problems. We illustrate
the power of misc3d’s rendering functions by showing several views
of the Utah teapot, a classic computer graphics example, and we
present three illustrations of statistical applications.

The Marching Cubes Algorithm

The marching cubes (MC) algorithm, a well known high-
resolution isosurface extraction method used in volume data visual-
ization, was first studied by Lorensen and Cline (1987). MC pro-
duces the isosurface of F(z,y,2) = a by a divided and conquer
method. The basic idea of MC is that the whole space can be di-
vided into a set of cubes and decisions are made separately for each
cube on how the intersection of the surface with the cube is repre-
sented by one or more triangles. MC was first proposed for and is
widely used in medical image rendering. MC is also used in other
fields, for example for displaying a volume of oil in a geological vol-
ume. In statistics it can be used to draw a three dimensional contour
plot of a density function.

After dividing the space into cubes, each cube is examined. If one
or more vertices (corners) of a cube have values less than the user-
specified isovalue (negative), and one or more have values greater
than this value (positive) then the cube must contribute some com-
ponents of the isosurface. (Throughout the poster, vertices are con-
sidered to have the same values if they are either all greater or all
smaller than the isovalue.) After determining which edges of the
cube are intersected by the isosurface, a triangular topological rep-
resentation of the surface can be constructed. Since there are 8
vertices for each cube and the value of each vertex can be either
negative or positive, there are 2° = 256 possible cases for each cube.
Due to topological equivalence by rotation and switching between
the positive and negative values, however, there are in total 15 con-
figurations shown in Figure 1, which was generated based on lookup
tables in contour3d. There is no triangle in configuration 0, since
values of all vertices are either all positive or all negative. For con-
figuration 1, all vertices, except the one at front left lower corner,
have the same values. Therefore, the isosurface separates the unique
vertex from the others. The topological representation of the isosur-
face within a cube is constructed by one or more triangles. The
vertices of these triangles, the points at which the isosurface inter-
sects the cube edges, are determined by bilinear interpolation. The
isosurface representation is obtained by going through all the cubes

‘ / A7 : /
g ‘z éj - [
I::El..::l Caze [[b} Caze 1 [n:}l Case 2 [d} Case 3 I::E-'::I Caze 1

(f) Case 5 (g) Case B (h) Case 7 (i) Case & (j) Case B
A
.

(k) Caze 10 (1) Case 11 (m) Case 12 (n) Case 13 (o) Caze 11

Figure 1. The Original Lookup Table of the Marching Cubes Algorithm.

Since its origin, a lot of research has been done to im-
prove the quality of the topological representation produced by
MC. Nielson and Hamann (1991) pointed out that there could
be an ambiguity in the face of a cube when all four edges of
the face are intersected. Face ambiguity arises when the ver-
tices on diagonal corners have the same values, the values of ver-
tices joined by edges differ. Face ambiguity is illustrated in Fig-
ure 2. If vertices A, C are positive and B, D are negative, then
the isosurface can intersect the plane in two possible ways.

L

Figure 2. Illustration of face ambiguity

In addition to face ambiguities, Chernyaev (1995) recognized that,
there are internal ambiguities, in terms of the representation of the
trilinear interpolant in the interior of the cube. For example, in Fig-
ure 3, case 4 has two sub-cases. Two marked vertices could either be
separated (case 4.1.1) or connected inside the cube (case 4.1.2). Fur-
thermore, in order to make the triangular representation of the iso-
surface more conformable to the truth, an additional vertex might be
needed (see case 7.3 in Figure 3 for example). The contour3d func-
tion mainly uses the algorithm suggested in Chernyaev (1995). The
enlarged lookup table in Chernyaev 1995 is shown in Figure 3 and
is derived from the lookup tables in contour3d. Note that there are
still some sub-subcases which are not exhibited in the enlarged table.
Take case 13.2 for example, there are 6 sub-subcases, and only the
one with positive vertices on the top face being connected is shown.

f33 (1 ih] [(o :d: 3.

v m=0
——
£ L
fig: 111 i) 113 115 O R () 1.2

uy G2 TR il 72 il 73 T
Lt FoL2 i A i g e 10 e 10012
ik 12 i1} 11 ' 1211 fap 151 2 122

iny 123

(D5 1353, e v (el 14

Figure 3. The Lookup Table of the Marching Cubes 33 Algorithm.

Illustrations of the Rendering Functions

We illustrate the power of misc3d’s rendering functions by show-
ing several views of the Utah teapot, a classic computer graphics
example.

Different Rendering Engines

Rendering can be done using rgl, standard graphics, or grid
graphics. Figure 4 shows the teapot rendered by three engines.

nisc3d> datalteapot)

miscidr

nisc3d> haveRGL <- suppressWarnings(require(rgl,quietly=TRUE})
miscids

nisc3d» ttri < makeTriangles(teapot$vertices, teapotfedges,

+ color = "red", color2 = "green'")
nisc2d> edges <- teapot$edges

misc3ds

nisc3d> ttriDull <- updateTriangles(ttri,material="dull")

nisc3d» ttriShiny <- updatelriangles(ttri,material="shiny"}

nisc3d» ttriMetal <- updateTriangles(ttri,material="metal")

nisc3d>» drawScene(ttri,screen=list{y=-30,x=40), scale = FALSE)

nisc3d> drawScene(ttri,screen-list{y=—30,x=40), scale = FALSE, engine="grid")

nisc3d» drawScene.rgl(ttri, color="green'")

_

(o) standard {b) grid {c) gl

Figure 4. Different Rendering Engines.

Different Rendering Colors

Different colors could be used, as ilustrated in Figure 5.

nisc3d> drawScene(updateTriangles (ttriShiny,color2=grey.colors{ncol (edges))),

+ screen=list (y=-30,x=40}, scale = FALSE)
nisc3d> drawScene(updatelriangles (ttriMetal, colorZ=heat.colors(ncol(edges))),
+ screen=list (y=-30,x=40), scale = FALSE}

(a) arey (b) heat

Figure 5. Different Rendering Colors.

Rendering Multiple Objects

Several objects could be drawn on the same graph by cre-
ating a list of appropriately positioned triangle mesh objects.

misc3d» he <— heat.colors(ncol (edges))

nisc3d> drawScene{list{updateTriangles(ttri, cclor2 = he),
+ translateTriangles(ttri,z=4)),

+ scraen=list (y=—30,x=40), scale = FALSE)

Figure 6. Multiple Teapots.

Nested Objects

Nested objects can be rendered using wire frame effects or using
different transparency levels if supported by the rendering engine.

misc3d> drawScene(list{updateTriangles(ttri,color="blue", fill=FALSE,

+ col.mesh="tlu="),

+ scaleTriangles (updateTriangles(ttriMetal, color2='red"}, 0.6)),
+ screen=1ist{y=-30,x=20,y=-140), scale = FALSE)

nisc3d> drawScene.rgl(list(updateTriangles(ttri, alpha = 0.5, color="blua"},
+ scaleTriangles(ttriMetal, 0.6)))

{a) wire frame effect

{b) different transperency levels

Figure 7. Nested Teapots.

Lighting and Shading

Rendering in the standard or grid engines is enhanced by us-
ing a lighting model. Shading can further enhance the results at
the expense of higher computational cost. T'wo lighting models are
supported by the functions phongLighting and perspLighting. The
Phong lighting model adjusts colors based on view direction, light
direction, and material properties. It incorporates ambient and dif-
fuse light, which are the same color as the object, and specular light,
which is a convex combination of the object color and the (white)
light color. This is based roughly on the description in Foley et al.
(1996). perspLighting implements approximately the same lighting
model as the persp function. Figure 8 shows the effects of phong-
Lighting with different materials, perspLighting, and the default.

nisc3d> drawScene (ttri,screen=list{y=-30,x=40), scale = FALSE)
nisc3d> drawScene (ttriDull,screen=list(y=-30,x=40), scale = FALSE)
nisc3d> drawScene (ttriShiny,screen=list(y=-30,x=40), scale = FALSE)
nisc3d> drawScene (ttriMetal,screen=1list(y=-30,x=40), scale = FALSE)
nisc3d> drawScene (ttri,screen=list{y=-30,x=40},lighting=persplighting,
+ scale = FALSE)

(b} PerspLighting

{e) Phong-Dull

{d) Phong-Shiny {e) Phong-Metal

Figure 8. Different Lighting Functions.

The image can be further enhanced by subdividing the triangles
one or more times and applying the Phong shading model to the sub-
triangles. Figure 9 shows the effect of different Phong shading levels

nisc3d> drawScene(updatelriangles(ttriMetal, color2 = hc, smocth = 1),
+ screen=list (y=—30,x=40), scale = FALSE)
nisc3d> drawScenef{updatelriangles(ttriMetal, color2 = hec, smocth = 23,
+ screen=1ist (y=—30,x=40), scale = FALSE)
nisc3d> drawScene(updateTriangles(ttriMetal, color2 = hc, smocth = 3),
+ screen=list (y=—30,x=40), scale = FALSE)

|[a) Bmooth=1

{b] Smooth=2 {c]l Smooth=3

Figure 9. Different Phong Shading Levels.

Three Exampless of Statistical Applications

Contours of a Tri-Variate Density

Figure 10 shows mnested contours of a mixture of three
tri-variate normal densities. Case 1 uses transparency and
case 2 uses a cut-out strategy to show the nested contours.

nisc3dd> nmixd < functien{x, ¥, =z, m, 57 {
mi=cid+ 0.4 # dnorm{x, m, =) % dnorm{y, m, =) # dnorm(z, m, =) +

mi=cid+ 0.3 # dnorm{x, -m, =) #% dnerm{y, —m, =) % doneorm{z, -m, =) +
mi=cid+ 0.3 # dnormix, m, =) % dnorm{y, -1.5 #% m, =) # dnermiz, m, =)
misc3d+ }
nisc3dd> f <— functienfx,¥,z) ommix3{x,¥,z,.5,.5)
niscadds g <- functienfn = 40, &k = 5, =sle = 0.1, =®hi = 0.5,
niscad+ comap = heat.colers) {
mi=cid+ th <- seq{0.05, 0.2, len = kJ
niszcad+ col <- rev{cmap{length(th))J
niscad+ al < =zeq{ale, shi, len = length{th))
mi=cid+ x <- =eq{-Z2, 2, len-nm)
mi=cid+ contourad(f,th,x,x,x,color=col,alpha=al)
niscad+ rel . bglcol="white")
misc3d+ }
niscdd> g(40,5)
niscdd> gs <- functiomf{n = 40, k& = 5, cmap = heat.colors, ...J {
mi=cid+ th <- seq{0.05, 0.2, len = kJ
niszcad+ col <- rev{cmap{length{th))J
mi=cid+ x <- =eq{-Z2, 2, len-nm)
mi=cid+ m <- function{x,¥,z) x* » .25 | ¥ < -.3
misc3ad+ coentour3d(f,th,x,x,x,coloer=col, mask = m, engine = "standard",
mi=cid+ gcale = FALSE, ...)
niscad+ rgl.belcol="yhite"])
misc3d+ }
nisc3d> gs(40, 5, screen=list{z = 130, x = -80), coleorZ = "lightgray",
niscad+ cnap=rainbow)
-

(a) Case 1

(B Case 2

Figure 10. Nested Contours of Mixture of Three Tri-variate Normal Densities.

Figure 11 shows nested contours of a kernel density estimate
for the iris data estimated using a 3D analog to kde2d in MASS.

misc3dr Llibrary(MASS)

nizc3d> library{misc3d)

misc3dds» source("kde3d.R")

misc3dr» data(iris)

misc3d» v <- kde3d{x=irisfSepsal.length, y=irisfSepal.Width, z=iris}Petal.Length)
nisc3d» rgl.points(x=irisfSepal.length,y=irisfSepal Width, z=iris$Petal.Length,
miscad+ size=2, color="red")

misc3dr axes3di)

misc3d» rgl.bgfcolor="white")

niscdd» contourdd(rdd, x=rfr, y=riy, z=ri=,

miscad+ lev=c{0.15, 0.05},
misc3ad+ alpha=c{0.4,0.5),
misc3id+ color=c{"red", "yellow"), =add=T)

misc3d> title3d(xlab="Sepal.Length",ylab="Sepal .Width" ,zlab="Petal .Length")

Figure 11. Nested Contours of a Kernel Density Estimate for the Iris Data.

Ratio-of-Uniforms Sampling Region

By the Ratio-of-Uniforms method, if V, U are uniform on

A={(v,u):veRL0<u< Vf(lv/u+n)}

then X = V/U + n has density proportional to f. Figure 12 shows
A for the binormal distribution with © = (=5,5), ¢ = (1,1) and
p = 0.75 based on n = (0,0) (green) and n = (5,—5) (red).

niszc3d> parametricdd(fr=functienf{u, ¥} (u) * exp(-0.5 # {({u+5)"2 + (v-5)"Z2 -

mis=c3d+ 2 % 0.75 & (uts) & (wv-5)) /sqrt{1-.75"2))"(1/3),
mi=c3d+ fy=functionf{u, vl (v) * exp({-0.5 % ({u+s)~"2 + (v-5)"2 -
misc3d+ 2 4 0,75 & (utB) * (v-5))/sqrt{1-.75"2))"(1/3),
miscad+t fz=functionf{u, v) exp{-0.5 # ({utb)"2 + (v-5)"Z2 -
mis=c3d+ 2 4 0.75 & (u+B) *(v-5))/ aqrt(1-.75"2037(1/3),
mi=c3d+ u = geauchy((1:1003 /1013-5, ¥ = gecauchy((1:100),/1011+5,
misc3d+ color="gresn", box=TRUE)

misc3d> parametricdd(fx = functienm{u, v) {(u) #* expl{-0.5 % (U2 + ¥v"2 -

mizcid+ 2 % 0.75 4 u % vy sqrt{1-.75"2117(1/3),

mi=c3d+ fy = functienfu, v) (v) # exp(-0.5 * (u™2 + v~ 2 -
misc3d+ 2 4 0.75 % u & vl aqrt(1-.7572117(1/3),

miscad+t fz = functionfu, v) exp{(-0.5 % (U2 + +°2 -
misc3d+ 24 0.75 4 u #v)/sqrt{1-.7572))7(1/3),

mi=c3d+ u = geauchy((1:1003 /1013, v = geauchy{(1:1001/101),
mi=c3d+ coler="red", =dd=T, box=TRUE)

Figure 12. Ratio-of-Uniforms Sampling Region for Bivariate Normal Distribution.

Active Regions of the Human Brain

The left part of figure 13 shows the contour of a brain along
with two contours of active regions of the human brain under
stimulus, based on measured intensity differences between two
tasks (one of them is the control) in a PET experiment. The
three planes view of the active regions is shown on the right.

piscdd> library(AnalyzeFMRI)
niscdd> library(misc3d)

niscidd> temp<-f.read.analyze.volume("template.img")

ni=cdd> temp<-smperm{temp,c(l,3,2,4))

niscidd> contourdd(templ, ,95:1,1],lev=10000,alpha=0.5])

niscdd» tm<-f.read.analyze.volume("tmapl-3.img")

niscids> tm2 <- tm

misc3d> tmltmr=5] <- 5

niscidd> contourdd(ifelse(tenpl,,85:1,1] » 10000, tml[,,95:1]1, 0},
+ lev=5,cnlnr="yellnw",addﬁTRUE)

miscadr tml[tmp=4] < 4

nisc3dd> contourdd(ifelse(tenpl,,95:1,1] > 10000, tmz2[, ,95:1], G,
+ 1ev=4,color="red",alpha=0.3,add=TRUE)

misc3d> tmZ[tmz < 4] < 0§

nisc3dd> tmzZ[tmz »=1 % tmz <5] <- 1

nisc3d> misc3dr tm2[tm2 »=5] <- 2

miscdd» slices3d(tmZ,col=c{"white", "red", "yellow"),main="Thres FPlenes View")

Figure 13. Active Regions of the Human Brain.

REFERENCES

Chernyaev, E. V. 1995. Technical Report CN/95-17, CERN, Institute for High Energy
Physics.

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. 1996. Computer Graphics:
Principles and Practice in C (second ed.). Addison-Wesley Professional.

Lorensen, W. E.; & Cline, H. E. 1987, Computer Graphics, 21(4), 163.
Nielson, G. M., & Hamann, B. 1991. In VIS ’91: Proceedings of the 2nd conference on

Visualization 91, Los Alamitos, CA, USA, pp. 83-91. IEEE Computer Society
Press.

This poster was prepared with Brian Wolven’s Poster IATEX

macros v2.1.

