

Supervised Self-Organising Maps

Ron Wehrens
Institute of Molecules and Materials, IMM
Radboud University
Nijmegen, The Netherlands

Training SOMs

Initial state

Data: 177 Italian wines

Self-organising maps

Map high-dimensional data to a 2D grid of "units" according to similarity/distance (Kohonen, 1982).

Training SOMs

Initial state

Object 1

Winner 1

Training SOMs

Algorithm:

- Pick random object
- Determine winner in map
- Update winner and environment
- Periodically, decrease environment and learning rate

Mapping

Wines: codebook vectors

R code:

- > library(kohonen)
- > data(wines)
- > somnet <- som(scale(wines), gr = somgrid(5, 5), rlen=100)</pre>
- > plot(somnet, "codes")

Supervised SOMs

- use of all information
- better reproducibility
- better interpretability
- better predictions

W.J. Melssen, R. Wehrens and L.M.C Buydens, Chemom. Intell. Lab. Syst. (2006), in press.

Supervised SOMs

- use of all information
- better reproducibility
- better interpretability
- better predictions

- treat Y as a special (set of) variables
- separate range scaling of distances in X and Y
- explicit weighting of distances in X and Y
- for regression as well as classification
- > library(kohonen)
- > data(wines)

W.J. Melssen, R. Wehrens and L.M.C Buydens, Chemom. Intell. Lab. Syst. (2006), in press

Supervised SOMs

- use of all information
- better reproducibility
- better interpretability
- better predictions

- treat Y as a special (set of) variables
- separate range scaling of distances in X and Y
- explicit weighting of distances in X and Y
- for regression as well as classification

W.J. Melssen, R. Wehrens and L.M.C Buydens, Chemom. Intell. Lab. Syst. (2006), in press.

X-ray powder patterns

Descriptor of crystal structure: similar patterns should correspond to similar structures

Package wccsom

- Self-organising maps for powder patterns
- Supervised and unsupervised mapping
- Special similarity function (WCC) with one parameter: triangle width

Mapping using cell volume

Training time: 1 h 20' (P 3.2GHz)

	Space group	# compounds	label
	P212121	978	19
	P21	843	4
	P1	93	5
C2		99	1
	Total	2013	

Training set (1342 compounds) and a test set (671 compounds).

Mapping using space group


```
> sompredictions <-
+    predict(somnet, trainY = classvec2classmat(Ycl[training]))
> plot(somnet, "property",
+    property = sompredictions$unit.predictions)
> plot(xyfnet, "predict")
```


Prediction results (test set)

Volume prediction (correlation coefficients)

	Seed 7	Seed 13	Seed 31
SOM	.01	04	.01
XYF (class only)	.36	.41	.41
XYF (class and volume)	.72	.28	.68

Space group prediction (percentage correct)

	Seed 7	Seed 13	Seed 31
SOM	43%	43%	24%
XYF (class only)	87%	86%	85%
XYF (class and volume)	79%	46%	66%

Acknowledgements

Library 'class' by B.D. Ripley

Edwards & Oman, RNews 3(3), 2003

- René de Gelder
- Willem Melssen
- Egon Willighagen

Conclusions

- SOMs (supervised and unsupervised) are ideally suited for analysing databases of chemical structures
- Special distance measures can/must be used
- Supervised SOMs have many advantages: better predictions, easier to interpret, and better stability
- Training can take a long time but mapping is relatively fast
- Including space group information is important in predicting properties of crystals

