

Roberto Ugoccioni Sanpaolo IMI Group Torino, Italy

GRUPPO SANPAOLO IMI

UseR! 2006

Roberto Ugoccioni (SanpaoloIMI)

Why R and how

- Why use *R*?
 - no best-practice in the field, few existing tools
 - powerful, complete language
 - flexible framework
- How R is used at Sanpaolo IMI:
 - methodological research
 - application prototyping
 - production environment

Statistical approach to operational risk

JseR! 2006

Roberto Ugoccioni (SanpaoloIMI) 2/1

Operational risk measurement

- OR: Failures of normal processes (mistakes, frauds, robberies, liabilities, ...)
- Two complementary approaches:
 - historical data (backward-looking)
 - scenario analysis (forward-looking)
- Actuarial method: compose
 - Frequency distribution
 - Severity distribution

Statistical approach to operational ris

UseR! 2006

Roberto Ugoccioni (SanpaoloIMI)

npaoloIMI) 4/

Historical loss data analysis

- For each risk class (i.i.d.):
 - Fit distributions (maximum likelihood) to internal and external data
 - Choose best fits (GOF tests)
 - Compose internal/external distributions
 - Use FFT to compute 1-year period aggregate, including insurance effects
- Measure rank correlations between risk classes in the data
- Aggregate classes using copulas

Example loss data analysis

Example loss data analysis

- Fit distributions (maximum likelihood) to internal and external data
- Choose best fits (GOF tests)
- Compose internal/external distributions
- Use FFT to compute 1year period aggregate, including insurance effects

Example loss data analysis

- Fit distributions (maximum likelihood) to internal and external data
- Choose best fits (GOF tests)
- Compose internal/external distributions
- Use FFT to compute 1year period aggregate, including insurance effects

Scenario analysis

- Interview local management
- For each event type
 - Ask average frequency
 - Ask average loss
 - Ask "worst case" loss (99% quantile)
- Use ranges to guide these answers

Statistical approach to operational risk

Example scenario construction

- fix frequency classes
- determine three possible values for the 1-year aggregate unexpected loss
- for each mean frequency, determine points with same UL
- determine mean loss ranges
- for each mean loss range, determine worst-case ranges by instersecting with iso-UL curves

Preparing scenario analysis

- Prepare the answer ranges:
 - fix frequency classes
 - determine three possible values for the 1-year aggregate unexpected loss (UL+EL= 99.9% quantile)
 - for each mean frequency, determine points with same UL
 - determine mean loss ranges
 - for each mean loss range, determine worst-case ranges by instersecting with iso-UL curves

Example scenario construction

fix frequency classes determine three possible values for the 1-year aggregate unexpected loss

- for each frequency class, determine curves with same UL
- determine mean loss ranges
- for each mean loss range, determine worst-case ranges by instersecting with iso-UL curves

Statistical approach to operational risk... UseR! 2006 Roberto Ugoccioni (SanpaoloIMI) 13/15

Example scenario construction

Conclusions

How did R perform?

- methodological research and application prototyping: flexible tool, powerful language; library of tools developed
- production environment: needs ad hoc GUI, has little support for compilation on mainframe architectures (e.g. HPUX)
- memory/performance saturation limit hit when needing to handle very large amounts of data (>10⁷ points)

Example scenario construction

