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Introduction Remittances

The importance of remittances

3 major distant moneys: foreign direct investment (FDI), foreign aid
(ODA), remittances.

Remittance: the portion of international migrant workers earnings
sent back to countries of origin.

Remittances became the 2nd largest external source, behind FDI, of
external funding for countries in the world in 1997 (World Bank 2005).

Remittances exceed all combined FDI and ODA to Latin America and
the Caribbean and has become the largest distant money flows in that
region (IADB 2004).
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Introduction Remittances
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Introduction Remittances

Graphic comparison of distant money
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Introduction Political Liberalization

Average Polity Score in the World
 from 1971−2002
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Introduction Motivations and goals of the study

Motivations

Few scholastic effort has been devoted into studying the political
impact of remittances (rich on economic effect though)

Past methods using pooled cross-sectional and time-series regression
analysis of political liberalization is flawed.

Hard to validate their results country by country and year by year.
Cannot explain the micro-difference within each country
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Introduction Motivations and goals of the study

Goals

Systemic analysis of the effect of remittances on political liberalization

Improve the ability of making inference by using Bayesian multilevel
modeling (BML)
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Statistical results Remittance and regime change

Comparison of logit models
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Statistical results Remittance and regime change

Classical logit models
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Statistical results Remittance and regime change

BML logit model with varying intercepts
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BML logit model with varying intercepts
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Statistical results Remittance and regime change

BML logit model with varying intercepts
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Statistical results Remittance and regime change

BML logit model with varying intercepts and varying slopes
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BML logit model with varying intercepts and varying slopes

G
ui

ne
a−

B
is

sa
u

M
al

aw
i

B
ur

ki
na

 F
as

o
M

al
i

M
ad

ag
as

ca
r

C
ha

d
N

ig
er

ia
N

ig
er

H
ai

ti
R

w
an

da
B

en
in

T
og

o
G

ha
na

C
am

bo
di

a
B

an
gl

ad
es

h
S

en
eg

al
M

au
rit

an
ia

P
ak

is
ta

n
In

di
a

C
on

go
, R

ep
.

N
ic

ar
ag

ua
C

om
or

os
H

on
du

ra
s

M
ol

do
va

C
hi

na
C

am
er

oo
n

S
ri 

La
nk

a
A

rm
en

ia
B

ol
iv

ia
Z

im
ba

bw
e

G
ui

ne
a

A
lb

an
ia

In
do

ne
si

a
G

uy
an

a
P

hi
lip

pi
ne

s
E

gy
pt

, A
ra

b 
R

ep
.

C
ap

e 
V

er
de

D
om

in
ic

an
 R

ep
ub

lic
M

or
oc

co
Ja

m
ai

ca
G

ua
te

m
al

a
E

cu
ad

or
Jo

rd
an

E
l S

al
va

do
r

P
er

u
P

ar
ag

ua
y

C
ol

om
bi

a
R

om
an

ia
A

lg
er

ia
T

un
is

ia
D

om
in

ic
a

T
ur

ke
y

P
an

am
a

B
el

iz
e

B
ra

zi
l

B
el

ar
us

La
tv

ia
M

ex
ic

o
C

ro
at

ia
G

ab
on

T
rin

id
ad

 a
nd

 T
ob

ag
o

A
rg

en
tin

a

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Slopes of BML 2

BML logit model with varying intercepts and varying slopes

G
ui

ne
a−

B
is

sa
u

M
al

aw
i

B
ur

ki
na

 F
as

o
M

al
i

M
ad

ag
as

ca
r

C
ha

d
N

ig
er

ia
N

ig
er

H
ai

ti
R

w
an

da
B

en
in

T
og

o
G

ha
na

C
am

bo
di

a
B

an
gl

ad
es

h
S

en
eg

al
M

au
rit

an
ia

P
ak

is
ta

n
In

di
a

C
on

go
, R

ep
.

N
ic

ar
ag

ua
C

om
or

os
H

on
du

ra
s

M
ol

do
va

C
hi

na
C

am
er

oo
n

S
ri 

La
nk

a
A

rm
en

ia
B

ol
iv

ia
Z

im
ba

bw
e

G
ui

ne
a

A
lb

an
ia

In
do

ne
si

a
G

uy
an

a
P

hi
lip

pi
ne

s
E

gy
pt

, A
ra

b 
R

ep
.

C
ap

e 
V

er
de

D
om

in
ic

an
 R

ep
ub

lic
M

or
oc

co
Ja

m
ai

ca
G

ua
te

m
al

a
E

cu
ad

or
Jo

rd
an

E
l S

al
va

do
r

P
er

u
P

ar
ag

ua
y

C
ol

om
bi

a
R

om
an

ia
A

lg
er

ia
T

un
is

ia
D

om
in

ic
a

T
ur

ke
y

P
an

am
a

B
el

iz
e

B
ra

zi
l

B
el

ar
us

La
tv

ia
M

ex
ic

o
C

ro
at

ia
G

ab
on

T
rin

id
ad

 a
nd

 T
ob

ag
o

A
rg

en
tin

a

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Intercept of BML 2

Statistical results Remittance and regime change

BML logit model with varying intercepts and varying slopes

BML 2

Year

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

1971 1976 1981 1986 1991 1996 2001

● ● ● ● ●

●
●

● ● ●

●

●

●
● ●

●
● ●

● ● ● ●

●

●

●
● ● ●

●
● ●

1981

1993

Yu-Sung Su () Applied Bayesian Multilevel Modeling: Remittances and Political LiberalizationJune 8, 2006 19 / 23

Statistical results Remittance and regime change

Binned residual plots for logit models
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Statistical results Remittances and regime democratic performance

BML linear models
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Statistical results Remittances and regime democratic performance

BML linear models
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Conclusions

Conclusions

1 The statistical results confirm my hypothesis that an increase in the
remittance inflows will increase the chance for an autocracy to
democratize.

2 The paper also shows that an increase in the remittance inflows will
enhance the regime performance.

3 To examine the effect country by country and over time, the result
varies.

4 The paper does not claim that if we pour in a tremendous amount of
remittances in a autocratic country in a certain year, we can cause
that autocracy transits to democracy.

5 Bayesian multilevel modeling does perform better, though; it is
computationally intensive.
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