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Marketing Problems

Marketing is an applied field that seeks to 
optimize firm behavior with respect to a set of 
marketing actions, c.f. 

set prices optimally for a large number of 
items

design products

allocate marketing efforts – trade promotion 
budgets, sales force
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Marketing Data

Survey Data:  large number of respondents 
observed to choose between alternative 
products, rankings/ratings data.  Multiple 
questions per respondent

Demand Data: data from point of sale optical 
scanning terminals.  In US and Europe, all major 
retailers maintain large data warehouses with 
point of sale data.  

Items x Stores x Time >1000K.
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Models and Methods of Inference

A great deal of disaggregate data

panel structure (N large, T small)

discrete response (mutually exclusive choices, 
multiple products consumed jointly)

ordinal response (rankings)

Small amounts of information at the unit level

Requires Discrete Data models and a method of 
inference with a full accounting for uncertainty 
(only Bayes need apply)
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Hierarchical Models

A multi-level Model comprised of a set of 
conditional distributions:

“unit-level” model – distribution of response 
given marketing variables 

first stage prior – specifies distribution of 
response parameters over units

second stage prior – prior on parameters of 
first stage prior

Modular both conceptually and from a 
computational point of view.
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A Graphical Review of Hierarchical Models
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Hierarchical Models and Bayesian Inference

Model to a Bayesian (Prior and Likelihood):

Object of Interest for Inference (Posterior):

Computational Method:

MCMC (indirect simulation from joint 
posterior)

( ) ( ) ( )θ τ τ θ×∏ ∏ ,i i i i
i i

p p h p y X

( )θ θ τ… …1 1, , , , ,m mp y y
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Implementation in R (bayesm)

Data Structures (all lists)

rxxxYyyZzz(Prior, Data, Mcmc)

Prior: list of hyperparms (defaults)

Data: list of lists for panel data

e.g. Data=list(regdata,Z)

regdata[[i]]=list(y,X)

Mcmc: Mcmc tuning parms

e.g. R (# draws), thining parm, 
Metropolis scaling (with def)
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Implementation in R (bayesm)

Output: 

draws of model parameters:

list of lists (e.g. normal components)

3 dim array (unit x coef x draw)

User Decisions:

“burn-in” / convergence of the chain

run it longer! 

Numerical Efficiency (numEff)

how to summarize the joint distribution?
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Coding

“Chambers” Philosophy – code in R, profile and 
rewrite only where necessary. Resulted in ~5000 
lines of R code and 500 of C

As amateur R coders, we use only a tiny subset 
of R language. Code is numerically efficient but 
does not use many features such as classes

Moving toward more use of .Call to maximize 
use of R functions.

This maximizes readability of code.

We hope others will extend and modify.
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Hierarchical Models considered in bayesm

rhierLinearModel Normal Prior

rhierLinearMixed Mixture of Normals

rhierMnlRwMixed MNL with mixture of Normals

rhierMnlRwDP MNL with Dirichlet Process Prior

rhierBinLogit Binary logit with Normal prior

rhierNegBinRw Neg Bin with Normal Prior

rscaleUsage Ordinal Probit with Scale Usage

rnmixGibbs Mixture of Normals density est

rDPGibbs DP Prior density est
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Hierarchical Linear Model- rhierLinearModel
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Adaptive Shrinkage

With fixed values of        , we have m independent 
Bayes regressions with informative priors. 

In the hierarchical setting, we “learn” about the 
location and spread of the       .

The extent of shrinkage, for any one unit, depends 
on dispersion of betas across units and the amount 
of information available for that unit.

βΔ,V

{ }βi
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An Example – Key Account Data

y= log of sales of a “sliced cheese” product at a 
“key” account – market retailer combination

X:  log(price)

display (dummy if on display in the store)

weekly data on 88 accounts. Average account has 
65 weeks of data.  

See data(cheese)
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An Example – Key Account Data
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Prior on       is key. 

Shrinkage
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Heterogeneous logit model

Assume Th observations per respondent

The posterior:
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Random effects with regressors

Δ is a matrix of regression coefficients related 
covariates (Z) to mean of random-effects distribution.

zh are covariates for respondent h
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data(bank)

Pairs of proto-type credit cards were offered to 
respondents.  The respondents were asked to 
choose between cards as defined by “attributes.”

Each respondent made between 13 and 17 
paired comparisons.

Sample Attributes (14 in all):

Interest rate, annual fee, grace period, out-of-
state or in-state bank, …
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data(bank)

Not all possible combinations of attributes were 
offered to each respondent.  Logit structure 
(independence of irrelevant alternatives makes this 
possible).

14,799 comparisons made by 946 respondents.
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Sample observations
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respondent 1 choose first card on first pair.  Card chosen 
had attribute 1 on. Card not chosen had attribute 4 on.
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Sample demographics (Z)

0507514

0706013

0303012

0404011

0505010

0100509

150508

060307

030306

040404

030753

140402

120601

genderincomeageid
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rhierBinLogit
z=read.table("bank.dat",header=TRUE) 
d=read.table("bank demo.dat",header=TRUE)

# center demo data so that mean of random-effects
# distribution can be interpretted as the average respondents
d[,1]=rep(1,nrow(d))
d[,2]=d[,2]-mean(d[,2])
d[,3]=d[,3]-mean(d[,3])
d[,4]=d[,4]-mean(d[,4])
hh=levels(factor(z$id))
nhh=length(hh)

Dat=NULL

for (i in 1:nhh) {
y=z[z[,1]==hh[i],2]
nobs=length(y)
X=as.matrix(z[z[,1]==hh[i],c(3:16)])
Dat[[i]]=list(y=y,X=X)

}
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Running rhierBinLogit (continued)

Data=list(Dat=Dat,Demo=d)

nxvar=14
ndvar=4
nu=nxvar+5
Prior=list(nu=nu,V0=nu*diag(rep(1,nxvar)),

deltabar=matrix(rep(0,nxvar*ndvar),
ncol=nxvar),

Adelta=.01*diag(rep(1,ndvar)))

Mcmc=list(R=20000,sbeta=0.2,keep=20)

out=rhierBinLogit(Prior=Prior,Data=Data,Mcmc=Mcmc)
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Running rhierBinLogit (continued)
Attempting MCMC Inference for Hierarchical Binary Logit:

14  variables in X
4  variables in Z
for  946  cross-sectional units

Prior Parms:
nu = 17
V 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,]   17    0    0    0    0    0    0    0    0     0     0  0     0     0
[2,]    0   17    0    0    0    0    0    0    0     0     0  0     0     0
[3,]    0    0   17    0    0    0    0    0    0     0     0  0     0     0
[4,]    0    0    0   17    0    0    0    0    0     0     0  0     0     0
[5,]    0    0    0    0   17    0    0    0    0     0     0  0     0     0
[6,]    0    0    0    0    0   17    0    0    0     0     0  0     0     0
[7,]    0    0    0    0    0    0   17    0    0     0     0  0     0     0
[8,]    0    0    0    0    0    0    0   17    0     0     0  0     0     0
[9,]    0    0    0    0    0    0    0    0   17     0     0  0     0     0

[10,]    0    0    0    0    0    0    0    0    0    17     0  0     0     0
[11,]    0    0    0    0    0    0    0    0    0     0    17  0     0     0
[12,]    0    0    0    0    0    0    0    0    0     0     0  17     0     0
[13,]    0    0    0    0    0    0    0    0    0     0     0  0    17     0
[14,]    0    0    0    0    0    0    0    0    0     0     0  0     0    17
Deltabar

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,]    0    0    0    0    0    0    0    0    0     0     0   0     0     0
[2,]    0    0    0    0    0    0    0    0    0     0     0   0     0     0
[3,]    0    0    0    0    0    0    0    0    0     0     0   0     0     0
[4,]    0    0    0    0    0    0    0    0    0     0     0   0     0     0
ADelta

[,1] [,2] [,3] [,4]
[1,] 0.01 0.00 0.00 0.00
[2,] 0.00 0.01 0.00 0.00
[3,] 0.00 0.00 0.01 0.00
[4,] 0.00 0.00 0.00 0.01

MCMC Parms: 
sbeta= 0.2  R=  20000  keep=  20

MCMC Iteration (est time to end - min)
100  ( 153.6 )
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Running rhierBinLogit (continued)

19900  ( 0.8 )
20000  ( 0 )

Total Time Elapsed:  154.33
> str(out)
List of 5
$ betadraw : num [1:946, 1:14, 1:1000]  0.4868  0.1015 -0.2833 -0.3313  0.0549 ...
$ Vbetadraw: num [1:1000, 1:196] 0.0651 0.0880 0.0973 0.1332 0.1204 ...
$ Deltadraw: num [1:1000, 1:56] -0.00758 -0.00291  0.00996  0.03392  0.03758 ...
$ llike : num [, 1:1000] -9744 -9592 -9372 -9262 -8997 ...
$ reject   : num [, 1:1000] 0.607 0.593 0.598 0.653 0.607 ...

We now must summarize these numbers:

1. Convergence of chain (trace plots)

2. Marginal distribution of various model parameters
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Non-normal Priors (mixture of normals)
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An Application to Scanner Panel Data

Observe a panel of 347 households selecting 
from 5 brands of tub margarine.

No reason to believe that coefficients of the 
multinomial logit are normally distributed over 
households.

For example, some households may be willing to 
pay a premium for certain brands.

Included covariates: brand intercepts, log-price, 
“loyalty” variable
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RhierMnlRwMixture

Implements an unconstrained Gibbs Sampler for a 
mixture of normals distribution as the first stage 
prior.

Combined with Metropolis algorithm to draw 
logit coefficient vectors for each panelist.

Returns draws of each component in normal 
mixture.  Estimate the density at a point:

( ) ( )β ϕ β μ= × Σ∑∑1ˆ ,r r r
k k k

r k

p pvec
R
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Mixture of Normals
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Mixture of Normals
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Mixture of Normals
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Scale Usage Heterogeneity

Survey questions involving a rating scale for 
satisfaction/purchase intention/happiness are 
commonplace

Typically, respondents rate products (overall) and 
attributes on a ordinal (5/7/9) point scale

Respondents exhibit scale usage heterogeneity. 
Some use only upper or lower end of the scale. 

What biases are caused by this?

Can we make anything more than ordinal 
statements?
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Example of CSM Questionnaire

Service Quality Review
Please mark the appropriate circle for each question. Compare OUR PERFORMANCE during the PAST 12 MONTHS
to YOUR EXPECTATIONS of what QUALITY SHOULD BE.

Much Better Less Much Not
Better Than Than Equal to Than Less Than Applicable

Overall Performance

Service
1. Efficiency of service call handling.
2. Professionalism of our service personnel.
3. Response time to service calls.

Contract Administration
4. Timeliness of contract administration.
5. Accuracy of contract administration.

Please share your comments and suggestions for improvements:

Overall 
Rating

Product 
Attributes

1-5 Discrete Rating 
Scale
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+ve Covariance Bias
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Model

Latent Variable Formulation:

We observe a vector xi ( M  x 1) of 
discrete/ordered responses:

xij= {1, …,  K };  i = 1, …, N

No. of Survey 
Questions

Pts in the 
scale

( )μ Σ∼ * *,i i iy iidN

−

< =
< < =

> =
#

1

1 2

1

1
2

ij ij

ij ij

ij K ij

y c x
c y c x

y c x K
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Model: Example with 5 point scale

c1 c2 c3 c4

Xij = 1 Xij = 2 Xij = 3 Xij = 4 Xij = 5
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Model: Scale Usage Heterogeneity

We incorporate scale usage heterogeneity using 
location-scale shift at the latent variable level

For example: 

top end of scale -- large value of τ and 
small σ

Location shift

Scale shift( )

μ τι σ= + +

Σ~ 0,

i i i i

i

y z

z N
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Hierarchical Model  rscaleUsage

We use non-standard hierarchical (random 
effects) formulation:
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Some Real Data: data(customerSat)

Customer Survey in Business-to-Business Context

Product is a form of Business Advertising

10 Qs -- 10 pt scale (10 is “excellent,” 1 is “poor”)

N=1810/M=10/K=10

Q1: Overall Value

Q2-Q4: Price

Q5-Q10: Effectiveness

reach/geographic area/attracting 
customers/evaluation of effectiveness
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Evidence of Scale Usage Heterogeneity
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Correlation Structure: Raw Data 

Q. Mean Covariance\Correlation Matrix
1 6.06 6.50 0.65 0.62 0.78 0.65 0.74 0.59 0.56 0.44 0.45
2 5.88 4.38 7.00 0.77 0.76 0.55 0.49 0.42 0.43 0.35 0.35
3 6.27 4.16 5.45 7.06 0.72 0.52 0.46 0.43 0.46 0.38 0.40
4 5.55 5.36 5.43 5.16 7.37 0.64 0.67 0.52 0.52 0.41 0.40
5 6.13 4.35 3.83 3.62 4.53 6.84 0.69 0.58 0.59 0.49 0.46
6 6.05 4.82 3.29 3.15 4.61 4.61 6.49 0.59 0.59 0.45 0.44
7 7.25 3.64 2.70 2.73 3.42 3.68 3.66 5.85 0.65 0.62 0.60
8 7.46 3.28 2.61 2.79 3.23 3.51 3.41 3.61 5.21 0.62 0.62
9 7.89 2.41 1.99 2.18 2.39 2.72 2.47 3.20 3.02 4.57 0.75
10 7.77 2.55 2.06 2.33 2.42 2.67 2.51 3.21 2.95 3.54 4.89

High Correlations between each Q2-Q10 and Q1.

Positive correlations Q2-Q10
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Correlation Structure: Standardized Data 

Correlations are attenuated -- some -ve

Q. Mean Covariance\Correlation Matrix
1 -0.29 0.66 -0.07 -0.13 0.03 -0.14 0.06 -0.11 -0.16 -0.24 -0.21
2 -0.42 -0.05 0.82 0.35 0.20 -0.19 -0.36 -0.32 -0.25 -0.26 -0.27
3 -0.18 -0.10 0.31 0.93 0.14 -0.21 -0.33 -0.33 -0.24 -0.24 -0.22
4 -0.60 0.02 0.14 0.11 0.62 -0.23 -0.17 -0.24 -0.20 -0.26 -0.28
5 -0.28 -0.09 -0.15 -0.18 -0.16 0.76 0.04 -0.07 -0.01 -0.10 -0.11
6 -0.32 0.04 -0.28 -0.27 -0.12 0.03 0.74 0.03 0.03 -0.12 -0.14
7  0.33 -0.08 -0.23 -0.26 -0.16 -0.05 0.02 0.67 0.01 0.06 0.05
8  0.46 -0.09 -0.16 -0.17 -0.12 -0.01 0.02 0.01 0.56 0.01 -0.04
9  0.68 -0.14 -0.17 -0.18 -0.16 -0.07 -0.08 0.04 0.00 0.58 0.31
10  0.61 -0.14 -0.20 -0.18 -0.18 -0.08 -0.10 0.03 -0.02 0.19 0.67
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Correlation Structure of Latent Variables 

Not all strongly related to overall

-ve
between 
price and 

reach

Q.     Mean (μ)  Covariance\Correlation Matrix (Σ)
1 6.43

(.08)
4.13
(.73)

.31 .25 .55 .29 .39 .15 .05 -.15 -.12

2 6.16
(.08)

1.50
(.65)

5.7
(.77)

.65 .61 .16 -.09 -.11 -.11 -.25 -.23

3 6.47
(.08)

1.33
(.67)

4.07
(.73)

6.93
(.86)

.53 .13 -.08 -.05 -.03 -.13 -.09

4 6.00
(.08)

2.79
(.70)

3.70
(.74)

3.49
(.76)

6.34
(.86)

.31 .29 .07 .05 -.15 -.14

5 6.46
(.08)

1.36
(.65)

0.87
(.65)

0.82
(.67)

1.81
(.70)

5.44
(.78)

.38 .22 .21 .02 .02

6 7.39
(.08)

1.55
(.63)

-0.42
(.60)

-.39
(.62)

1.42
(.66)

1.73
(.74)

3.89
(.69)

.20 .12 -.13 -.13

7 7.50
(.08)

0.77
(.60)

-0.67
(.59)

-0.34
(.63)

0.43
(.64)

1.31
(.62)

1.00
(.59)

6.49
(.78)

.49 .49 .46

8 7.50
(.08)

0.24
(.57)

-0.60
(.57)

-0.15
(.61)

0.26
(.60)

1.10
(.60)

0.56
(.56)

2.84
(.65)

5.29
(.73)

.47 .43

9 7.84
(.08)

-0.75
(.58)

-1.45
(.57)

-0.82
(.64)

-0.96
(.60)

0.11
(.61)

-0.65
(.56)

3.07
(.71)

2.68
(.69)

6.13
(.87)

.71

10 7.76
(.08)

-0.60
(.59)

-1.38
(.59)

-0.58
(.65)

-.91
(.62)

0.10
(.62)

-0.64
(.57)

2.97
(.71)

2.48
(.69)

4.41
(.80)

6.36
(.89)
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External Validation

Survey contains some information on intention to 
increase expenditure next year as well as past 
years expenditures.  

Sort by overall measures, and compare 
cumulative expenditure % change to average % 
change (“lift”)

Quantile Raw Centered Row Mean τi Latent

Top 5% .69 .66 -.076 -.30 3.59
Top 10% 1.39 1.28 .25 .78 2.35
Top 25% 1.76 1.38 1.59 1.18 1.98
Top 50% 1.29 .95 1.051 1.11 1.62
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Summary

Analysis of Marketing Data requires models 
appropriate for discrete, panel data.

Bayesian methods are the only computationally 
feasible methods for many of these models.

User discretion and judgement is required for any 
sensible analysis.

R-based implementations are possible and 
provide useable solutions even for large datasets.


