TIMP: A package for parametric modeling of multiway spectroscopic measurements

Katharine M. Mullen, Ivo H.M. van Stokkum Department of Physics and Astronomy, Vrije Universiteit Amsterdam, The Netherlands {kate,ivo}@nat.vu.nl

> Project documentation: http://www.nat.vu.nl/comp/tim Supported by NWO grant 635.000.014

[An underlying bilinear model]

Time-resolved spectra Ψ :

$$\Psi = CE^T$$

- C: concentrations in time
- E: spectra
- column c_i of C represents the concentration profile, column e_i of E represents the spectrum of ith spectrally distinct component of Ψ

- _ [The data: time-resolved spectra] —
- how do (bio)physical systems interact with light?
- can investigate by time-resolved spectroscopy:
 - measure spectra (i.e., intensity of light over wavelengths λ_i) over time t:
 - resulting data is matrix:

$$\Psi = \begin{array}{c|cccc} & \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \hline t_1 & \psi(t_1, \lambda_1) & \psi(t_1, \lambda_2) & \dots & \psi(t_1, \lambda_n) \\ \hline \Psi = & t_2 & \psi(t_2, \lambda_1) & \psi(t_2, \lambda_2) & \dots & \psi(t_2, \lambda_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \hline t_m & \psi(t_m, \lambda_1) & \psi(t_m, \lambda_2) & \dots & \psi(t_m, \lambda_n) \\ \hline \end{array}$$

 \bullet analysis of Ψ provides insight into dynamics of underlying system

__ [An inverse problem] _____

goal: recover C and E from measured Ψ

- C and E large (1000×10)
- this nonlinear estimation problem has thousands of parameters

parametric model-based approach:

 \bullet fit a parametric model to C and solve for the entries of E as conditionally linear: estimation problem becomes

$$Minimize \parallel (I - C(\Theta)C^{+}(\Theta))\Psi \parallel_{2}$$

- typical models $C(\Theta)$ have Θ of $10^1 10^2$ parameters
- parameter estimates valuable for physical interpretation; unrealistic estimates falsify model

	R	for	model	representation
- 1	n	1OF	modei	representation

R facilitates representation of models $C(\Theta)$:

- nonlinear parameter vector Θ partitioned into groups representing distinct model aspects
- parameters may be functions of other parameters, leading to hierarchy
- S4 class objects organize hierarchical models

[Conclusions] ——

- a PSE for modeling time-resolved spectra and other multi-way spectroscopic measurements has been implemented in R
 - numerous model types and options for multiexperiment modeling, constraints on parameters supported
- R facilitates efficient iterative model specification, parameter estimation and validation

Future work:

- public release of the package
- extension of a GUI prototyped with tcl/tk package
- further development of models

[R for model specification, parameter estimation, validation]

optimal model discovery iterative process:

R-based problem-solving environment (PSE) facilitates efficient iteration:

- S4 classes for model specification
- nls and numericDeriv functions for fast parameter estimation
- integrated statistical functions for analysis of fit
- flexible graphics for display of results