KernGPLM - A Package for Kernel-Based Fitting of Aim of this Talk
Generalized Partial Linear and Additive Models analysis of highdimensional data by semiparametric (generalized)

June 8, 2006 regression models

e compare different approaches to additive models (AM) and generalized

Marlene Muller additive models (GAM)
i e include categorical variables = partial linear terms (combination of
AM/PLM and GAM/GPLM)
Fraunhofer Institut
Wieematmathematik e provide software = R package KernGPLM

e focus on kernel-based techniques for high-dimensional data

Financial application: Credit Rating Binary choice model
e new interest in this field because of Basel II: — credit rating: estimate scores + PDs
;e::::czllir;quirements of a bank are adapted to the individual credit PV — 11X) = E(Y|X) = G(3X)

e key problems: determine rating score and subsequently default
probabilities (PDs) as a function of some explanatory variables —, parametric binary choice models

— classical logit/probit-type models to estimate linear predictors (scores)

. B B . R
and probabilities (PDs) logit  P(Y =1|X)=F(X B) F(e)= i~

probit P(Y =1|X)=®(XT3) &(e)standard normal cdf

Two objectives: Generalized linear model (GLM)

e study single factors E(Y|X) =G (XTﬁ)
e find the best model
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Data Example: Credit Data
References: Fahrmeir/Hamerle (1984); Fahrmeir & Tutz (1995)
e default indicator: Y € {0,1}, where 1 = default

e explanatory variables:
personal characteristics, credit history, credit characteristics

e sample size: 1000 (stratified sample with 300 defaults)

Estimated (Logit) Scores

Score = 1.334 — 0.763"*" previous — 0.310- employed + 0.566™*- (d9-12)
10.898"*- (d12-18) + 0.981***- (d18-24) + 1.550***- (d>24)
—0.984***. savings — 0.363""- purpose + 0.660***- house
—0.000251**- amount — 0.0942**- age + 0.0000000173**- amount®

+0.000833*- age® + 0.00000236- (amount - age)

*, **, *** denote significant coefficients at the 10%, 5%, 1% level, respectively
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Semiparametric Models

e local regression
EY|T)=G{m(T)}, m nonparametric
e generalized partial linear model (GPLM)

EY|X, T)=G {XTﬂ + m(T)} m nonparametric

e generalized additive partial linear model (semiparametric GAM)

P
B(Y|X,T)=G{ fo+X "B+ my(T))

j=1

m; nonparametric

Some references:
Loader (1999), Hastie and Tibshirani (1990), Hardle et al. (2004), Green and Silverman (1994)

Data Example: Logit (with interaction)
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credit default on AGE and AMOUNT using quadratic and interaction terms, left:
surface and right: contours of the fitted score function

Data Example: GPLM
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credit default on AGE and AMOUNT using a nonparametric function, left: surface
and right: contours of the fitted score function on AGE and AMOUNT




Estimation Approaches for GPLM/GAM

e GPLM:
* generalization of Speckman’s estimator (type of profile likelihood)
* backfitting for two additive components and local scoring

References:

(PLM) Speckman (1988), Robinson (1988); (PLM/splines) Schimek (2000), Eubank et al. (1998),
Schimek (2002); (GPLM) Severini and Staniswalis (1994), Muller (2001)

e semiparametric GAM:
* [modified |smooth ] backfitting and local scoring
* marginal [internalized | integration

References:

(marginal integraton) Tjestheim and Auestad (1994), Chen et al. (1996),
Hengartner et al. (1999), Hengartner and Sperlich (2005);

(backfitting) Buja et al. (1989), Mammen et al. (1999), Nielsen and Sperlich (2005)
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Comparison of Algorithms

parametric step nonparametric step | est. matrix
Speckman | 8"V = (XTWX) '\ XTWZ | m"" =S(Z - XxB8) | n=R°Z

Backfitting | 37" = (X"WX) ' XTWZ | m"" =S(Z - x8) | n=RFZ

Profile | g7 = (XTWX) ' ATWZ | m" = n=R"z

Speckman/Backfitting:
X =(1-S)X, Z=(I1-S)Z, S weighted smoother matrix

Profile Likelihood:
X =(1-SP)x, Z=(1-5SF)Z, SP weighted (different) smoother matrix

References: Severini and Staniswalis (1994), Muller (2001)
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Estimation of the GPLM: generalized Speckman estimator

e partial linear model (identity G)

E(Y|X,T)=X"8+m(T)

—  mrev S(Y — x8)
ﬂnew _ (X‘T‘)'E)—l)?Ti}

e generalized partial linear model
E(Y|X,T)=G{X"B+m(T)}
—> above for adjusted dependent variable
Z=XB+m—W v,
v = (), W = diag(¢})

References: Severini and Staniswalis (1994)
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Estimation of the GAM

p
EY|X,T)=G B+ X8+ ij(Tj) m; nonparametric
j=1
e classical backfitting: fit single components by regression on the residuals w.r.t.
the other components

e modified backfitting: first project on the linear space spanned by all
regressors and then nonparametrically fit the partial residuals

e marginal (internalized) integration: estimate the marginal effect by
integrating a full dimensional nonparametric regression estimate
— original proposal is computationally intractable: O(n®)
= choice of nonparametric estimate is essential: marginal internalized
integration




Simulation Example:
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e B —classical
e B - modified

o M - classical

e M — pdf estimate 1

e M - pdf estimate 2
M - normal pdfs

Marginal integration — as initialization for backfitting
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Comparison of Algorithms

e consistency of marginal integration:

= if underlying function is truly additive, backfitting outperforms
marginal integration

= consider marginal integration to initialize backfitting (replacing the
usual zero-functions

e comparison of backfitting and marginal integration:

= marginal integration indeed estimates marginal effects, but large

number of observations is needed

= estimation method of the instruments is essential, dimension
reduction techniques are required
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Simulation Example: True Non-Additive Function

Backfit/Component 1 Backfit/ Component 2

o B —classical
e B — modified

Margint/ Component 1 Margint/ Component 2

o M - classical

: e M — pdf estimate 1
2] o M - pdf estimate 2
M - normal pdfs
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Marginal integration — estimate of marginal effects

Summary
e GPLM and semiparametric GAM are natural extensions of the GLM
e large amount of data is needed for estimating marginal effects
= R package KernGPLM with routines for
* (kernel based) generalized partial linear and additive models
* additive components by [ modified ] backfitting + local scoring
* additive components by marginal [internalized ] integration
e possible extensions:
* smooth backfitting
* externalized marginal integration
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