KernGPLM – A Package for Kernel-Based Fitting of Generalized Partial Linear and Additive Models

June 8, 2006

ITWM 2

Marlene Müller

Fraunhofer Institut
Techno- und
Wirtschaftsmathematik

Financial application: Credit Rating

- new interest in this field because of Basel II: capital requirements of a bank are adapted to the individual credit portfolio
- key problems: determine rating score and subsequently default probabilities (PDs) as a function of some explanatory variables
- \rightarrow classical **logit/probit-type models** to estimate linear predictors (scores) and probabilities (PDs)

Two objectives:

- study single factors
- find the **best model**

Aim of this Talk

analysis of highdimensional data by semiparametric (generalized) regression models

- compare different approaches to additive models (AM) and generalized additive models (GAM)
- provide software ⇒ R package KernGPLM
- focus on kernel-based techniques for high-dimensional data

Binary choice model

→ credit rating: estimate scores + PDs

$$P(Y = 1|\boldsymbol{X}) = E(Y|\boldsymbol{X}) = G(\boldsymbol{\beta}^{\top}\boldsymbol{X})$$

→ parametric binary choice models

$$\begin{array}{ll} \text{logit} & P(Y=1|\boldsymbol{X}) = F(\boldsymbol{X}^{\top}\boldsymbol{\beta}) & F(\bullet) = \frac{1}{1+e^{-\bullet}} \\ \text{probit} & P(Y=1|\boldsymbol{X}) = \Phi(\boldsymbol{X}^{\top}\boldsymbol{\beta}) & \Phi(\bullet) \text{ standard normal cdf} \end{array}$$

Generalized linear model (GLM)

$$E(Y|\boldsymbol{X}) = G\left(\boldsymbol{X}^{\top}\boldsymbol{\beta}\right)$$

Data Example: Credit Data

References: Fahrmeir/Hamerle (1984); Fahrmeir & Tutz (1995)

- default indicator: $Y \in \{0,1\}$, where 1 = default
- explanatory variables: personal characteristics, credit history, credit characteristics
- sample size: 1000 (stratified sample with 300 defaults)

Estimated (Logit) Scores

Semiparametric Models

local regression

$$E(Y|T) = G\{m(T)\}, m \text{ nonparametric}$$

• generalized partial linear model (GPLM)

$$E(Y|oldsymbol{X},oldsymbol{T}) = G\left\{oldsymbol{X}^{ op}oldsymbol{eta} + m(oldsymbol{T})
ight\} \quad m ext{ nonparametric}$$

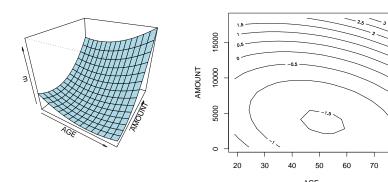
• generalized additive partial linear model (semiparametric GAM)

$$E(Y|m{X},m{T}) = G\left\{eta_0 + m{X}^ op m{eta} + \sum_{j=1}^p m_j(T_j)
ight\} \quad m_j ext{ nonparametric}$$

Some references:

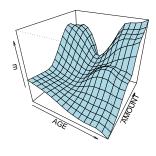
Loader (1999), Hastie and Tibshirani (1990), Härdle et al. (2004), Green and Silverman (1994)

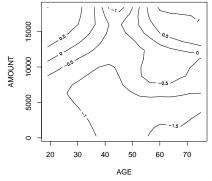
Data Example: Logit (with interaction)



credit default on AGE and AMOUNT using quadratic and interaction terms, left: surface and right: contours of the fitted score function

Data Example: GPLM





credit default on AGE and AMOUNT using a nonparametric function, left: surface and right: contours of the fitted score function on AGE and AMOUNT

^{*, **, ***} denote significant coefficients at the 10%, 5%, 1% level, respectively

Estimation Approaches for GPLM/GAM

- GPLM:
 - * generalization of Speckman's estimator (type of profile likelihood)
 - * backfitting for two additive components and local scoring

References:

(PLM) Speckman (1988), Robinson (1988); (PLM/splines) Schimek (2000), Eubank et al. (1998), Schimek (2002); (GPLM) Severini and Staniswalis (1994), Müller (2001)

- semiparametric GAM:
 - * [modified|smooth] backfitting and local scoring
 - * marginal [internalized] integration

References:

(marginal integraton) Tjøstheim and Auestad (1994), Chen et al. (1996), Hengartner et al. (1999), Hengartner and Sperlich (2005); (backfitting) Buja et al. (1989), Mammen et al. (1999), Nielsen and Sperlich (2005)

Comparison of Algorithms

	parametric step	nonparametric step	est. matrix
Speckman	$\boldsymbol{\beta}^{new} = (\widetilde{\mathcal{X}}^T \mathcal{W} \widetilde{\mathcal{X}})^{-1} \widetilde{\mathcal{X}}^T \mathcal{W} \widetilde{\boldsymbol{Z}}$	$oxed{m^{new} = \mathbf{S}(oldsymbol{Z} - \mathcal{X}oldsymbol{eta})}$	$oldsymbol{\eta} = \mathcal{R}^S oldsymbol{Z}$
Backfitting	$oldsymbol{eta}^{new} = (\mathcal{X}^T \mathcal{W} \widetilde{\mathcal{X}})^{-1} \mathcal{X}^T \mathcal{W} \widetilde{oldsymbol{Z}}$	$oldsymbol{m}^{new} = \mathbf{S}(oldsymbol{Z} - \mathcal{X}oldsymbol{eta})$	$oldsymbol{\eta} = \mathcal{R}^B oldsymbol{Z}$
Profile	$\boldsymbol{\beta}^{new} = (\boldsymbol{\mathcal{X}}^T \boldsymbol{\mathcal{W}} \widetilde{\boldsymbol{\mathcal{X}}})^{-1} \boldsymbol{\mathcal{X}}^T \boldsymbol{\mathcal{W}} \widetilde{\boldsymbol{Z}}$	$m^{new} =$	$oldsymbol{\eta} = \mathcal{R}^P oldsymbol{Z}$

Speckman/Backfitting:

 $\widetilde{\mathcal{X}} = (\mathbf{I} - \mathbf{S})\mathcal{X}$, $\widetilde{\mathbf{Z}} = (\mathbf{I} - \mathbf{S})\mathbf{Z}$, \mathbf{S} weighted smoother matrix

Profile Likelihood:

 $\widetilde{\mathcal{X}}=(\mathbf{I}-\mathbf{S}^P)\mathcal{X}$, $\widetilde{\mathbf{Z}}=(\mathbf{I}-\mathbf{S}^P)\mathbf{Z}$, \mathbf{S}^P weighted (different) smoother matrix

References: Severini and Staniswalis (1994), Müller (2001)

Estimation of the GPLM: generalized Speckman estimator

• partial linear model (identity G)

$$E(Y|X,T) = X^T\beta + m(T)$$

$$\implies m^{new} = \mathbf{S}(Y - \mathcal{X}eta) \ eta^{new} = (\widetilde{\mathcal{X}}^T\widetilde{\mathcal{X}})^{-1}\widetilde{\mathcal{X}}^T\widetilde{Y}$$

generalized partial linear model

$$E(Y|X,T) = G\{X^T\beta + m(T)\}$$

⇒ above for adjusted dependent variable

$$Z = \mathcal{X}\beta + m - \mathcal{W}^{-1}v,$$

$$v = (\ell_i')$$
, $\mathcal{W} = \operatorname{diag}(\ell_i'')$

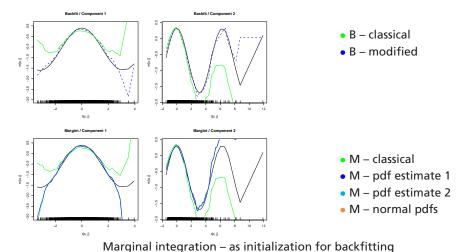
References: Severini and Staniswalis (1994)

Estimation of the GAM

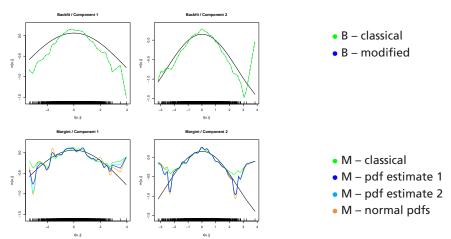
$$E(Y|m{X},m{T}) = G\left\{eta_0 + m{X}^ op m{eta} + \sum_{j=1}^p m_j(T_j)
ight\} \quad m_j ext{ nonparametric}$$

- **classical backfitting:** fit single components by regression on the residuals w.r.t. the other components
- modified backfitting: first project on the linear space spanned by all regressors and then nonparametrically fit the partial residuals
- marginal (internalized) integration: estimate the marginal effect by integrating a full dimensional nonparametric regression estimate
 - \Longrightarrow original proposal is computationally intractable: $O(n^3)$
 - \Longrightarrow choice of nonparametric estimate is essential: marginal internalized integration

Simulation Example: True Additive Function



Simulation Example: True Non-Additive Function



Marginal integration – estimate of marginal effects

Comparison of Algorithms

- consistency of marginal integration:
- \Rightarrow if underlying function is truly additive, backfitting outperforms marginal integration
- \Rightarrow consider marginal integration to initialize backfitting (replacing the usual zero-functions
- comparison of backfitting and marginal integration:
 - \Rightarrow marginal integration indeed estimates marginal effects, but large number of observations is needed
 - \Rightarrow estimation method of the instruments is essential, dimension reduction techniques are required

Summary

- GPLM and semiparametric GAM are natural extensions of the GLM
- large amount of data is needed for estimating marginal effects
- ⇒ R package **KernGPLM** with routines for
 - \star (kernel based) generalized partial linear and additive models
 - $\star\,$ additive components by [modified] backfitting + local scoring
 - $\star \ \ \text{additive components by marginal} \ [\, \text{internalized} \,] \ \text{integration}$
- possible extensions:
 - * smooth backfitting
 - \star externalized marginal integration

шwм 12

References

- Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). *Annals of Statistics*, 17:453–555.
- Chen, R., Härdle, W., Linton, O., and Severance-Lossin, E. (1996). Estimation and variable selection in additive nonparametric regression models. In Härdle, W. and Schimek, M., editors, *Proceedings of the COMPSTAT Satellite Meeting Semmering 1994*, Heidelberg. Physica Verlag.
- Eubank, R. L., Kambour, E. L., Kim, J. T., Klipple, K., Reese, C. S., and Schimek, M. G. (1998). Estimation in partially linear models. *Computational Statistics & Data Analysis*, 29:27–34.
- Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models, volume 58 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.
- Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). *Nonparametric and Semiparametric Modeling:* An Introduction. Springer, New York.
- Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.
- Hengartner, N., Kim, W., and Linton, O. (1999). A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. *Journal of Computational and Graphical Statistics*, 8:1–20.
- Hengartner, N. and Sperlich, S. (2005). Rate-optimal estimation with the integration method in the presence of many covariates. *Journal of Multivariate Analysis*, 95:246–272.
- Loader, C. (1999). Local Regression and Likelihood. Springer, New York.

- Mammen, E., Linton, O., and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. *Annals of Statistics*, 27:1443–1490.
- Müller, M. (2001). Estimation and testing in generalized partial linear models a comparative study. *Statistics and Computing*, 11:299–309.
- Nielsen, J. and Sperlich, S. (2005). Smooth backfitting in practice. *Journal of the Royal Statistical Society, Series B*, 67:43–61.
- Robinson, P. M. (1988). Root n-consistent semiparametric regression. Econometrica, 56:931-954.
- Schimek, M. G. (2000). Estimation and inference in partially linear models with smoothing splines. *Journal of Statistical Planning and Inference*, 91:525–540.
- Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. *Journal of the American Statistical Association*, 89:501–511.
- Speckman, P. E. (1988). Regression analysis for partially linear models. *Journal of the Royal Statistical Society, Series B*, 50:413–436.
- Tjøstheim, D. and Auestad, B. (1994). Nonparametric identification of nonlinear time series: Projections. Journal of the American Statistical Association, 89:1398–1409.

