Some Preliminary Market Research: A Googoloscopy

Parametric Links for Binary Response

Roger Koenker and Jungmo Yoon

University of Illinois, Urbana-Champaign

UseR! 2006

Abstract
There is more to life than logit and probit.

Link	GoogleHits
Logit	2,800,000
Probit	1,900,000
Cloglog	1,700
Cauchit	433

Koenker and Yoon (UIUC)

Parametric Links

UseR! 2006

1 / 14

Koenker and Yoon (UIUC)

Parametric I

UseR1 2006

Some Preliminary Market Research: A Googoloscopy

LinkGoogleHitsLogit2,800,000Probit1,900,000Cloglog1,700Cauchit433

Some Preliminary Market Research: A Googoloscopy

Link	GoogleHits
Logit	2,800,000
Probit	1,900,000
Cloglog	1,700
Cauchit	433

A Meta-Analysis Proposal:

• Factors determining the use of Logit vs. Probit in binary response applications.

A Meta-Analysis Proposal:

- Factors determining the use of Logit vs. Probit in binary response applications.
- Should we use logit or probit for the analysis?

Cauchit?

Cauchit?

As in the Cauchy distribution, also known as the Witch of Agnesi: Available in R since 2.1.0.

As in the Cauchy distribution, also known as the Witch of Agnesi: Available in R since 2.1.0.

Koenker and Yoon (UIUC)

Koenker and Yoon (UIUC)

Cauchit?

Why Do We Need Parametric Links?

As in the Cauchy distribution, also known as the Witch of Agnesi: Available in R since 2.1.0.

Cauchit is much more tolerant of a few surprising observations than is either logit or probit.

The three canonical human motivations:

• Guilt: For 20 years I've been teaching Daryl Pregibon's (1980) paper "A Goodness of Link Test"

Why Do We Need Parametric Links?

Why Do We Need Parametric Links?

The three canonical human motivations:

• Guilt: For 20 years I've been teaching Daryl Pregibon's (1980) paper "A Goodness of Link Test" – but I could never answer the obvious question: "What should we do if we reject the logistic specification?"

The three canonical human motivations:

- Guilt: For 20 years I've been teaching Daryl Pregibon's (1980) paper
 "A Goodness of Link Test" but I could never answer the obvious question: "What should we do if we reject the logistic specification?"
- Boredom: There must be more to life than probit or logit.

Koenker and Yoon (UIUC)

Parametric Links

UseR! 2006

6 4/14

Koenker and Yoon (UII

Parametric Li

II DI 2006

4 / 1

Why Do We Need Parametric Links?

The three canonical human motivations:

- Guilt: For 20 years I've been teaching Daryl Pregibon's (1980) paper
 "A Goodness of Link Test" but I could never answer the obvious question: "What should we do if we reject the logistic specification?"
- Boredom: There must be more to life than probit or logit.
- Fear: Maybe we are all missing something interesting that could be revealed by more general link functions.

What is a Link Function?

Latent variable model for binary response,

$$y_i^* = x_i^\top \beta + u_i, \quad u_i \sim \mathsf{iidF}$$

ロト 4回ト 4 恵ト 4 恵ト 恵 めるぐ

- □ ト ← @ ト ← 重 ト · 重 · りへ

What is a Link Function?

Latent variable model for binary response,

$$y_i^* = x_i^\top \beta + u_i$$
, $u_i \sim iidF$

Observed response is:

$$y_i = \{y_i^* \geqslant 0\} = \{u_i \geqslant -x_i^\top \beta\}$$

What is a Link Function?

Latent variable model for binary response,

$$y_i^* = x_i^\top \beta + u_i$$
, $u_i \sim iidF$

Observed response is:

$$y_i = \{y_i^* \geqslant 0\} = \{u_i \geqslant -x_i^\top \beta\}$$

Probability of the event is:

$$P\{y_i = 1\} = 1 - F(-x_i^\top \beta) \equiv \pi$$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q @

Koenker and Yoon (UIUC)

What is a Link Function?

Latent variable model for binary response,

$$y_i^* = x_i^\top \beta + u_i$$
, $u_i \sim iidF$

Observed response is:

$$y_i = \{y_i^* \geqslant 0\} = \{u_i \geqslant -x_i^\top \beta\}$$

Probability of the event is:

$$P{y_i = 1} = 1 - F(-x_i^{\top}\beta) \equiv \pi$$

Link function is just the quantile function of the error distribution,

$$g(\pi) = -F^{-1}(1-\pi) = \boldsymbol{x}_i^\top \boldsymbol{\beta}$$

Two Parametric Families of Link Functions

ullet Gosset: The Student t family with degrees of freedom u provides a convenient nesting of probit and Cauchit.

Two Parametric Families of Link Functions

- Gosset: The Student t family with degrees of freedom ν provides a convenient nesting of probit and Cauchit.
- Pregibon: The (generalized) Tukey λ family

$$g(\pi) = \frac{\pi^{\alpha+\delta}}{\alpha+\delta} - \frac{(1-\pi)^{\alpha-\delta}}{\alpha-\delta}$$

provides a nice nesting of logit: $(\alpha, \delta) = (0, 0)$, the parameters α and δ can be interpreted as kurtosis and skewness, respectively.

The Pregibon Family

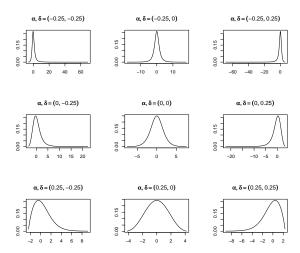


Figure: Pregibon Densities for various (α, δ) 's. All densities scaled to have the same interquartile range.

イロナ 不倒す 不足す 不足す 一足

Koenker and Yoon (UIUC)

Implementation in R

• Crucial Change is to permit "..." in glm families:

Implementation in R

• Crucial Change is to permit "..." in glm families:

- Provide p-d-q functions for the new link.
 - ► Thanks to Luke Tierney for a R-devel suggestion to expand the range
 - \triangleright Thanks to Robert King for the gld package for the generalized Tukey λ family.

Implementation in R

• Crucial Change is to permit "..." in glm families:

- Provide p-d-q functions for the new link.
 - ► Thanks to Luke Tierney for a R-devel suggestion to expand the range of qt().
 - \blacktriangleright Thanks to Robert King for the gld package for the generalized Tukey λ family.
- Choose optimizer for the profiled likelihood:
 - Gosset: optimize() for $v \in (0.15, 30)$
 - ▶ Pregibon: optim() for $(\alpha, \delta) \in [-0.5, 0.5]^2$

Implementation in R

• Crucial Change is to permit "..." in glm families:

- Provide p-d-q functions for the new link.
 - ► Thanks to Luke Tierney for a R-devel suggestion to expand the range of qt().
 - \blacktriangleright Thanks to Robert King for the gld package for the generalized Tukey λ family.
- Choose optimizer for the profiled likelihood:
 - ▶ Gosset: optimize() for $\nu \in (0.15, 30)$
 - ▶ Pregibon: optim() for $(\alpha, \delta) \in [-0.5, 0.5]^2$
- Plea to R-core: Quite minor changes in glm() and friends would be sufficient to allow users to (more easily) "roll their own links."

Koenker and Yoon (UIUC)

Performance of the Gosset Link

A model of job tenure at Western Electric (R.I.P.), the probability π_i of quiting within 6 months of initial employment is given by,

$$g_{\nu}(\pi_{i}) = \beta_{0} + \beta_{1}SEX_{i} + \beta_{2}DEX_{i} + \beta_{3}LEX_{i} + \beta_{4}LEX_{i}^{2}$$

Performance of the Gosset Link

A model of job tenure at Western Electric (R.I.P.), the probability π_i of quiting within 6 months of initial employment is given by,

$$g_{\nu}(\pi_{i}) = \beta_{0} + \beta_{1}SEX_{i} + \beta_{2}DEX_{i} + \beta_{3}LEX_{i} + \beta_{4}LEX_{i}^{2}$$

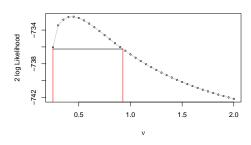


Figure: Profile likelihood for the Gosset link parameter ν

Does the Link Really Matter?

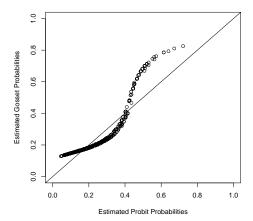


Figure: PP Plot of Fitted Probabilities: Probit vs MLE Gosset Models

Can We Distinguish Gosset Links?

Frequency		n = 500		n = 1000			
	$v_0 = 1$	$v_0 = 2$	$v_0 = 6$	$\nu_0 = 1$	$\nu_0 = 2$	$v_0 = 6$	
$H_0: \nu_0 = 1$	0.062	0.530	0.988	0.056	0.842	1.000	
$H_0: \nu_0 = 2$	0.458	0.056	0.516	0.776	0.070	0.808	
$H_0: \nu_0 = 6$	0.930	0.522	0.010	1.000	0.814	0.042	

Table: Rejection frequencies of the likelihood ratio test. Column entries represent fixed values of the true γ parameter, while row entries represent fixed values of the hypothesized parameter. Thus, diagonal table entries indicate size of the test, off-diagonal entries report power. Results are based on 500 replications for each sample size.

■	\triangleright	< ₽	> - ◀	=	> -	€ ≣.	>	₹	200

Koenker and Yoon (UIUC)

Koenker and Yoon (UIUC)

10 / 14

A More Direct Measure of Performance?

$d_{p}(\hat{F}, F) = (\int |\hat{F}(x^{\top}\hat{\beta}) - F(x^{\top}\beta)|^{p} dG(x))^{1/p}$

Estimator	d_1			d_2			d_{∞}		
	$\nu = 1$	$\nu = 2$	$\nu = 6$	$\nu = 1$	$\nu = 2$	$\nu = 6$	$\nu = 1$	$\nu = 2$	$\nu = 6$
Probit	0.065	0.038	0.013	0.133	0.119	0.092	0.186	0.171	0.136
Cauchit	0.016	0.024	0.033	0.022	0.034	0.048	0.055	0.107	0.167
MLE	0.020	0.016	0.012	0.027	0.024	0.021	0.070	0.065	0.058
Bayes	0.020	0.018	0.013	0.028	0.027	0.024	0.071	0.077	0.069

Table: Performance of Several Binary Response Estimators: The Gosset MLE and Bayes (posterior coordinatewise median) perform well in all three settings.

Pregibon Link?

Pregibon link is computationally more challenging than the Gosset link:

- But profile likelihood is still well-behaved,
- GLM method of scoring with step halving works well,
- Standardizing the interquartile range is helpful,
- Complements influence robust methods in glmrob,
- Bayesian MCMC offers a complementary approach to MLE,
- More details, simulation results, etc available from

/http://www.econ.uiuc.edu/~roger

Binary Response

- Can be more than a choice between probit and logit.
- One, two, many links!

Koenker and Yoon (UIUC)

Parametric Links

UseR! 2006

DI 2006