

Outlier Detection with Application to Geochemistry

Peter Filzmoser

Department of Statistics and Probability Theory Vienna University of Technology, Austria

Vienna, Austria

June 16, 2006

Vienna University of Technology

Univariate versus Multivariate Outliers

Univariate versus Multivariate Outliers

Univariate versus Multivariate Outliers

Univariate versus Multivariate Outliers

Standard methods are based on the Mahalanobis distances (MD):

$$\mathsf{MD}_i := d(x_i, t, C) = \{(x_i - t)^{ op} C^{-1}(x_i - t)\}^{1/2}$$

for a sample $x_1,\ldots,x_n\in I\!\!R^p$ and estimators of location t and covariance C.

⇒ Robust estimates of location and covariance are needed!

Outlier detection:

Outliers will typically have large distance. If multivariate normal distribution is assumed, MD_i^2 is approx. χ_p^2 distributed.

- \Longrightarrow suspect observations: $\mathrm{MD}^2_i > \chi^2_{p,0.975}$
 - does not account for different sample size
 - $\bullet \ \chi_p^2$ -approximation is poor

Example: Simulated data with outliers

TU

Chi-square plot:

Plot robust MD_i^2 against quantiles of χ_p^2 .

⇒ iterative deletion of points with large distance until a straight line appears.

Drawback: no automatic procedure, needs user interaction.

Iterative deletion of outliers:

Iterative deletion of outliers:

Iterative deletion of outliers:

G(u) ... theoretical distribution function of χ^2_p , $G_n(u)$... empirical distribution function of MD^2_i .

For
$$\eta=\chi^2_{p,1-\alpha}$$
 define

$$p_n(\eta) = \sup_{u \ge \eta} \{G(u) - G_n(u)\}^+.$$

Then a measure of *outliers* in the sample is

$$\alpha_n(\eta) = \begin{cases} 0 & \text{if } p_n(\eta) \le p_{crit}(\eta, n, p) \\ p_n(\eta) & \text{if } p_n(\eta) > p_{crit}(\eta, n, p). \end{cases}$$

 $p_{crit}(\eta, n, p)$ can be obtained by simulations.

Simulated Data Example

Example: Simulated Data

Consider the O-horizon (organic surface soil) of the Kola data set.

Take (more or less) typical elements for "pollution":

As, Cd, Co, Cu, Mg, Pb, Zn

Question: Where are the multivariate outliers?

Example: Map showing outliers

Choice of Symbols

Which Outliers?

Which Outliers?

TU

Example: Map showing outliers

Example: From Multivariate to Univariate

As Cd Co Cu Mg Pb Zn

Example: Symbols from multivariate plot

Summary

library(mvoutlier)

includes

- all routines to generate the presented plots
- Kola data and other interesting geochemical data sets