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Poisson or Binomial data with the following properties

N

GLM with clustered data » Alarge data set,
A fixed effects approach # partitioned into many relatively small groups,
# and where members within groups have something in
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The problem Solutions
N

There are (at least) two possible solutions to the problem,

- N

# the number of parameters tend to increase with sample
size.

# This fact causes the standard assumptions underlying 1. arandom intercepts model, and

asymptotic results to be violated. 2. afixed effects model, with
# asymptotics replaced by simulation.
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Packages inR
The package has Imer,
the package has gimmPQL,
Jim Lindsey’s glmm in his package,

Myles’ and Clayton’s GLMMGibbs for fitting mixed
models by Gibbs sampling.

# Adding to that gimmML and gimmboot in the package
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The conditional distribution
—

given the random intercepts 81 + u;,i = 1,...,n:
Pr(Yij = vij | wi;x) = P(B%ij + ui, Yij),
i =0,1,...;0=1,...,n5, i =1,...,n.

® Bernoulli distribution
® logit link,
Ty

1+ez’

P(z,y) = y=0,1; —co < x < 00,

® cloglog link

P(z,y) = (1 — exp(—€”))? exp(—(1 — y)e”),

® Poisson distribution with log link

"ACy .

L P(z,y) = m —e

y=0,1,2,...; —co< <0

y=0,1; —co <z < o0,

e

In the fixed effects model (and in the conditional random

Data structure

N

n clusters of sizesn;,i=1,...,n.

For each clusteri,i =1, ...
(yila - ,ymi) and

vectors of explanatory variables (x;1, . ..
are p-dimensional vectors with

s the first element identically equal to unity,

s corresponding to the mean value of the random
intercepts.

,n, observe responses

, Xin; ), Where x;;

The random part, u; of the intercepts are normal with
mean zero and variance ¢2, and

it is assumed that u4, ..., u, are independent.
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Likelihood function
|

effects model), the likelihood function is

L((B,7);y.x

H H P /BXZ] + %7%))

1=1j=1

The log likelihood function is

L
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n N,

Z ZlogP IBXU + 'YZayzy)

=1 5=1

(((B.7);y,x
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Tests of cluster effect Computational aspects

- e

Testing is performed via a simple bootstrap (glmmboot).

N

# A profiling approach reduces an optimizing problem in

Under the null hypothesis of no grouping effect, high dimensions
# the grouping factor can be randomly permuted without # to a problem consisting of
changing the probability distribution (the » solving several one-variable equations followed by

approach), or » optimization in low dimensions.

# a parametric bootstrap approach: simulate
observations from the fitted model under the null
hypothesis (the approach).

L L |

GLM with clustered data — p. 9 GLM with clustered data — p. 10

The score vector Cluster components of the score

- I

The partial derivatives wrt 5,,, m = 1;...,p, of the log
likelihood function are:

N

he partial derivatives wrt~;, i = 1,...,n, are

Up+i(B,7y) = i6((ﬁ,7);3',><)

m 7
o IZG(,BXZ']‘+%, vij), t=1,...,n.
- sziij(ﬁXijJr% vij), m=1,...,p. =
i=1 j=1
where
_ 0 _ £P(x,y)
Glr.y) = g los Play) = 5
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With profiling Profile score
- | i N

Setting U,1(8,~) = 0 defines ~ implicitly as functions of 3,
% =7(B), i=1,....n B
F(B8,7(8)) = ;G(IBXU +7(8), yij) =0, i=1,...,n ) X i H(Bxi; + i, vij) o N
SOy H(Bxij + i, vi) o ’
From
0 ovi OF  OF which is needed when calculating the score corresponding

%F(ﬂ,%(ﬂ)) = 95,00 Tag, " to the profile likelihood.

we get
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Profile loglihood Profile partial derivatives

T fThe partial derivatives wrt 3,,, m = 1;...,p, of the log T

Replacing ~ by v(3) gives the profile log likelihood ¢("):
profile likelihood function becomes:

(P (Byy,x ZZIogP Bxij +i(B), vij) (P) 0
) 1 1 y J1) ) . (P) .
i=1 j=1 m (IB)_&ﬁmg (/67Y;X)
as a function of 3 alone. _ zn:i (x Pl ) (Bxi; + y
— ijm Xij '72 yzy)
i=1 j=1 Ofm
i (B
m( "’ Z Z /BXZJ + 71(6)7 yz’j)
Un(B,7(8)),
Thus we get back the unprofiled partial derivatives.
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—

Profile hessian

~I0(8) = 55-Un(B.1(B))

At the maximum
T i]ustifying the use of the profile likelihood: T

Theorem 1 (Patefield) The inverse hessians from the full
likelihood and from the profile likelihood for 3 are equal

n  n; 9 )
= Z injm (:L‘ijs + Z}ﬁ(ﬁ)>H(5X” +7(8), yij) when .
= ) (v.8) = (%.8).
= —Ins(B,7(8))
RS Doy Tigm Hig 3350 wijs Hij
; Z?':1 Hij ’
m,s=1,...,p.

where

L

Hij = H(Bxij +7(B), yij)s j=1...n5i=1,...,n

Preparation for R

(P(B) =371 320 log P(Bxij +%i(B), vij),
3 (B) = Sy S wimG (Bxis + % (B), vis),

m=1,...,p.

For fixed 3, v;(3) is found by solving

> G(Bxij + i, vig) =0,

J=1

with respectto ~;, i =1,...,n.
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Implementation in R
i

# Implemented in the package gimmMLin R.

# Covers three cases,
1. Binomial with logit  link,
2. Binomial with cloglog link,
3. with log link.

# The function is glmmboot,

# Testing of cluster effect is done by simulation (a simple
form of bootstrapping).

s conditionally, or

The maximization is performed by , via the C s unconditionally.
function vmmin, available as an entry point in the C

code of R.
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Binomial with logit link

P(z,y) = exp(xy) /(1 + exp(x)),
G(z,y) =y — P(x,1).
We get (1, . ..

ez
E Yij =
J=1

e

,7n) by solving the equations

exp(Bij + 7i)
1 + exp(Bzij + i)

j=1
fori =1,...,n (using the C version of uniroot ).
# Special cases: ) y;; = 0 0r n;; giving v; = —oo Of + oo,
respectively.
s Corresponding cluster can be thrown out.
L s (Should be used in gim ?)
Poisson with log link
® P(z,y) = &r exp(— exp(z))
® G(x,y)=y—¢€"
® Weget(vy,...,7,) from
Zyij =e Zexp(,@xij), i=1,...,n,
j=1 j=1
giving
> Yij }
i = lo J , t=1,...,n.
! g { Zj exp(0xi;)

L’ Special case: ) y;; = 0, giving 7; = —oc.

GLM with clustere

Binomial with cloglog link

e N

® P(x,y) = (1 —exp(—exp(x))? exp(—(1 — y) exp(x)),

® G(x,y) = 52y - Pz, 1)}
» We get (v1,...,v,) by solving the equations

n;

Z exp(—exp(Bzij + i)

ng
E Yis = Ny —
Jj=1

7=1
fori =1,...,n (using the C version of uniroot ).
# Special cases: ) y;; = 00r n;; 7, = —00 O + 00,

respectively.
s Corresponding cluster can be thrown out.
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Simulation
I,

odel:

P(Yij=1]7)=1-P(Yy=0]%)

where v1,...,v, areiid N(0,0).

Hypothesis: o = 0.

L
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Simulation specifications Null model (o = 0); 5 clusters
’7’ o =0,0.5. T f j

Boot Boot, conditional

® n =5,50,500. = -
# Four methods: _ =- _ =
s glmmboot , unconditional and conditional, : i i . i 1
s gimmML g - | s -
+ gim (naively?). o oz os oo oo i
i
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Null model (o = 0); 50 clusters Null model (¢ = 0); 500 clusters
| R N

Boot Boot, conditional Boot Boot, conditional
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Clustering (o = 0.5); 50 clusters
R
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Timings, 5 clusters

T i system.time(gimmboot(y ~ 1, cluster = cluster,
+ data = timing, conditional = FALSE, boot = 2000))
[1] 0.06 0.00 0.06 0.00 0.00

> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 0.044 0.000 0.044 0.000 0.000

> system.time(glmmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.013 0.000 0.012 0.000 0.000

> system.time(glm(y ~ factor(cluster), data = timing,
family = binomial))
J ul] 0.008 0.000 0.008 0.000 0.000
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Timings, 50 clusters

i system.time(gimmboot(y ~ 1, cluster = cluster,
data = timing, conditional = FALSE, boot = 2000))
[1] 0.529 0.000 0.529 0.000 0.000

> system.time(gimmboot(y = 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 0.376 0.000 0.376 0.000 0.000

> system.time(gimmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.079 0.000 0.080 0.000 0.000

> system.time(glm(y = factor(cluster),
data = timing, family = binomial))
U1] 0.047 0.002 0.061 0.000 0.000

Timings, 500 clusters

> system.time(glmmboot(y ~ 1, cluster = cluster,

data = timing, conditional = FALSE, boot = 2000))
[1] 5.208 0.000 5.214 0.000 0.000

> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 3.713 0.003 3.719 0.000 0.000

> system.time(gimmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.611 0.000 0.611 0.000 0.000

> gystem.time(glm(y ~ factor(cluster),
data = timing, family = binomial))

J U1] 27.840 0.593 28.434 0.000 0.000
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glm vs. gimmboot(boot = 0)

—

Execution times

No. of clusters glm glmmboot
5 0.008 0.007

25 0.019 0.008

100 0.182 0.011

500 | 28.434 0.031

1000 | 223.288 0.056

Conclusion: Profiling is numerically very efficient.
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