GLM with clustered data

A fixed effects approach

Göran Broström

Department of Statistics
Umeå University
SE–901 87 Umeå, Sweden

GLM with clustered data – p. 1 GLM with clustered data

The problem

- the number of parameters tend to increase with sample size.
- This fact causes the standard assumptions underlying asymptotic results to be violated.

Background

Poisson or Binomial data with the following properties

- A large data set,
- partitioned into many relatively small groups,
- and where members within groups have something in common,

Solutions

There are (at least) two possible solutions to the problem,

- 1. a random intercepts model, and
- 2. a fixed effects model, with
 - asymptotics replaced by simulation.

I data = p. 3

Packages in R

- The package Matrix has Imer,
- the MASS package has glmmPQL,
- Jim Lindsey's glmm in his repeated package,
- Myles' and Clayton's GLMMGibbs for fitting mixed models by Gibbs sampling.
- Adding to that glmmML and glmmboot in the package glmmML.

GLM with clustered data - p. 5

The conditional distribution

given the random intercepts $\beta_1 + u_i, i = 1, ..., n$:

$$Pr(Y_{ij} = y_{ij} \mid u_i; \mathbf{x}) = P(\beta \mathbf{x}_{ij} + u_i, y_{ij}),$$

$$y_{ij} = 0, 1, \dots; \ j = 1, \dots, n_i, \ i = 1, \dots, n.$$

- Bernoulli distribution
 - logit link,

$$P(x,y) = \frac{e^{xy}}{1 + e^x}, \quad y = 0,1; \ -\infty < x < \infty,$$

cloglog link

$$P(x,y) = (1 - \exp(-e^x))^y \exp(-(1-y)e^x), \quad y = 0, 1; -\infty < x < \infty,$$

Poisson distribution with log link

$$P(x,y) = \frac{e^{xy}}{y!}e^{-e^x}, \quad y = 0, 1, 2, ...; -\infty < x < \infty$$

Data structure

- n clusters of sizes $n_i, i = 1, \ldots, n$.
- For each cluster i, i = 1, ..., n, observe responses $(y_{i1}, ..., y_{in_i})$ and
- vectors of explanatory variables $(\mathbf{x}_{i1}, \dots, \mathbf{x}_{in_i})$, where \mathbf{x}_{ij} are p-dimensional vectors with
 - the first element identically equal to unity,
 - corresponding to the mean value of the random intercepts.
- The random part, u_i of the intercepts are normal with mean zero and variance σ^2 , and
- it is assumed that u_1, \ldots, u_n are independent.

Likelihood function

In the fixed effects model (and in the conditional random effects model), the likelihood function is

$$L((\boldsymbol{\beta}, \boldsymbol{\gamma}); \mathbf{y}, \mathbf{x}) = \prod_{i=1}^{n} \prod_{j=1}^{n_i} P(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i, y_{ij}).$$

The log likelihood function is

$$\ell((\boldsymbol{\beta}, \boldsymbol{\gamma}); \mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \log P(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i, y_{ij}),$$

GLM with clustered data - p

Tests of cluster effect

Testing is performed via a simple bootstrap (glmmboot). Under the null hypothesis of no grouping effect,

- the grouping factor can be randomly permuted without changing the probability distribution (the conditional approach), or
- a parametric bootstrap approach: simulate observations from the fitted model under the null hypothesis (the unconditional approach).

Computational aspects

- A profiling approach reduces an optimizing problem in high dimensions
- to a problem consisting of
 - solving several one-variable equations followed by
 - optimization in low dimensions.

GLM with clustered data - p. 9

The score vector

The partial derivatives wrt β_m , m = 1, ..., p, of the log likelihood function are:

$$U_m(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \frac{\partial}{\partial \beta_m} \ell((\boldsymbol{\beta}, \boldsymbol{\gamma}); \mathbf{y}, \mathbf{x})$$
$$= \sum_{i=1}^n \sum_{j=1}^{n_i} x_{ijm} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i, y_{ij}), \quad m = 1, \dots, p.$$

where

$$G(x,y) = \frac{\partial}{\partial x} \log P(x,y) = \frac{\frac{\partial}{\partial x} P(x,y)}{P(x,y)}$$

Cluster components of the score

The partial derivatives wrt γ_i , i = 1, ..., n, are

$$U_{p+i}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \frac{\partial}{\partial \gamma_i} \ell((\boldsymbol{\beta}, \boldsymbol{\gamma}); \mathbf{y}, \mathbf{x})$$
$$= \sum_{j=1}^{n_i} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i, y_{ij}), \quad i = 1, \dots, n.$$

DEW WITH Glastered data – p.

with clustered data - p. 11

With profiling

Setting $U_{p+i}(\beta, \gamma) = 0$ defines γ implicitly as functions of β , $\gamma_i = \gamma_i(\beta), i = 1, ..., n$:

$$F(\boldsymbol{\beta}, \gamma_i(\boldsymbol{\beta})) = \sum_{j=1}^{n_i} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij}) = 0, \quad i = 1, \dots, n.$$

From

$$\frac{\partial}{\partial \beta_m} F(\boldsymbol{\beta}, \gamma_i(\boldsymbol{\beta})) = \frac{\partial \gamma_i}{\partial \beta_m} \frac{\partial F}{\partial \gamma_i} + \frac{\partial F}{\partial \beta_m} = 0$$

we get

Profile score

$$\frac{\partial \gamma_{i}(\boldsymbol{\beta})}{\partial \beta_{m}} = -\frac{\frac{\partial F}{\partial \beta_{m}}}{\frac{\partial F}{\partial \gamma_{i}}}$$

$$= -\frac{\sum_{j=i}^{n_{i}} x_{ijm} H(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_{i}, y_{ij})}{\sum_{j=1}^{n_{i}} H(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_{i}, y_{ij})}, \quad i = 1, \dots, n; \ m = 1, \dots$$

which is needed when calculating the score corresponding to the profile likelihood.

GLM with clustered data - p. 13

Profile loglihood

Replacing γ by $\gamma(\beta)$ gives the profile log likelihood $\ell^{(P)}$:

$$\ell^{(P)}(\boldsymbol{\beta}; \mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \log P(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij}),$$

as a function of β alone.

Profile partial derivatives

The partial derivatives wrt β_m , m = 1, ..., p, of the log profile likelihood function becomes:

$$U_{m}^{(P)}(\boldsymbol{\beta}) = \frac{\partial}{\partial \beta_{m}} \ell^{(P)}(\boldsymbol{\beta}; \mathbf{y}, \mathbf{x})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \left(x_{ijm} + \frac{\partial \gamma_{i}(\boldsymbol{\beta})}{\partial \beta_{m}} \right) G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_{i}(\boldsymbol{\beta}), y_{ij})$$

$$= U_{m}(\boldsymbol{\beta}, \boldsymbol{\gamma}(\boldsymbol{\beta})) + \sum_{i=1}^{n} \frac{\partial \gamma_{i}(\boldsymbol{\beta})}{\partial \beta_{m}} \sum_{j=1}^{n_{i}} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_{i}(\boldsymbol{\beta}), y_{ij})$$

$$= U_{m}(\boldsymbol{\beta}, \boldsymbol{\gamma}(\boldsymbol{\beta})),$$

Thus we get back the unprofiled partial derivatives.

tered data – p. 15

Profile hessian

$$-I_{ms}^{(P)}(\boldsymbol{\beta}) = \frac{\partial}{\partial \beta_s} U_m(\boldsymbol{\beta}, \boldsymbol{\gamma}(\boldsymbol{\beta}))$$

$$= \sum_{i=1}^n \sum_{j=1}^{n_i} x_{ijm} \left(x_{ijs} + \frac{\partial \gamma_i(\boldsymbol{\beta})}{\partial \beta_s} \right) H(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij})$$

$$= -I_{ms}(\boldsymbol{\beta}, \boldsymbol{\gamma}(\boldsymbol{\beta}))$$

$$- \sum_{i=1}^n \frac{\sum_{j=1}^{n_i} x_{ijm} H_{ij} \sum_{j=1}^{n_i} x_{ijs} H_{ij}}{\sum_{j=1}^{n_i} H_{ij}},$$

$$m, s = 1, \dots, p.$$

where

$$H_{ij} = H(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij}), \quad j = 1, \dots, n_i; i = 1, \dots, n.$$

Preparation for R

- $\ell^{(P)}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \log P(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij}),$
- $U_m^{(P)}(\boldsymbol{\beta}) = \sum_{i=1}^n \sum_{j=1}^{n_i} x_{ijm} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i(\boldsymbol{\beta}), y_{ij}),$ $m = 1, \dots, p.$
- For fixed β , $\gamma_i(\beta)$ is found by solving

$$\sum_{j=1}^{n_i} G(\boldsymbol{\beta} \mathbf{x}_{ij} + \gamma_i, \ y_{ij}) = 0,$$

with respect to γ_i , $i = 1, \ldots, n$.

The maximization is performed by optim, via the C function vmmin, available as an entry point in the C code of R.

At the maximum

Justifying the use of the profile likelihood:

Theorem 1 (Patefield) The inverse hessians from the full likelihood and from the profile likelihood for β are equal when

$$(oldsymbol{\gamma},oldsymbol{eta})=(\hat{oldsymbol{\gamma}},\hat{oldsymbol{eta}}).$$

GLM with clustered data - p. 1

Implementation in R

- Implemented in the package glmmML in R.
- Covers three cases.
 - 1. Binomial with logit link,
 - 2. Binomial with cloglog link,
 - 3. Poisson with log link.
- The function is glmmboot,
- Testing of cluster effect is done by simulation (a simple form of bootstrapping).
 - conditionally, or
 - unconditionally.

GLM with clustered data - p.

Binomial with logit link

- $P(x,y) = \exp(xy)/(1 + \exp(x)),$
- G(x,y) = y P(x,1).
- We get $(\gamma_1, \ldots, \gamma_n)$ by solving the equations

$$\sum_{j=1}^{n_i} y_{ij} = \sum_{j=1}^{n_i} \frac{\exp(\beta x_{ij} + \gamma_i)}{1 + \exp(\beta x_{ij} + \gamma_i)}$$

for i = 1, ..., n (using the C version of uniroot).

- Special cases: $\sum y_{ij} = 0$ or n_i ; giving $\gamma_i = -\infty$ or $+\infty$, respectively.
 - Corresponding cluster can be thrown out.
 - (Should be used in glm?)

GLM with clustered data - p. 21

Poisson with log link

- $P(x,y) = \frac{e^{xy}}{y!} \exp(-\exp(x))$
- $G(x,y) = y e^x$
- We get $(\gamma_1, \ldots, \gamma_n)$ from

$$\sum_{j=1}^{n_i} y_{ij} = e^{\gamma_i} \sum_{j=1}^{n_i} \exp(\boldsymbol{\beta} \mathbf{x}_{ij}), \quad i = 1, \dots, n,$$

giving

$$\gamma_i = \log \left\{ \frac{\sum_j y_{ij}}{\sum_j \exp(\boldsymbol{\beta} \mathbf{x}_{ij})} \right\}, \quad i = 1, \dots, n.$$

• Special case: $\sum y_{ij} = 0$, giving $\gamma_i = -\infty$.

Binomial with cloglog link

- $P(x,y) = (1 \exp(-\exp(x))^y \exp(-(1-y)\exp(x)),$
- $G(x,y) = \frac{\exp(x)}{P(x,1)} \{ y P(x,1) \}$
- We get $(\gamma_1, \ldots, \gamma_n)$ by solving the equations

$$\sum_{j=1}^{n_i} y_{ij} = n_i - \sum_{j=1}^{n_i} \exp(-\exp(\beta x_{ij} + \gamma_i))$$

for i = 1, ..., n (using the C version of uniroot).

- Special cases: $\sum y_{ij} = 0$ or n_i ; $\gamma_i = -\infty$ or $+\infty$, respectively.
 - Corresponding cluster can be thrown out.

GLIVI WITH Clustered data – p.

Simulation

Model:

$$P(Y_{ij} = 1 \mid \gamma_i) = 1 - P(Y_{ij} = 0 \mid \gamma_i)$$

= $\frac{e^{\gamma_i}}{1 + e^{\gamma_i}}, \quad j = 1, \dots, 5; \quad i = 1, \dots, n,$

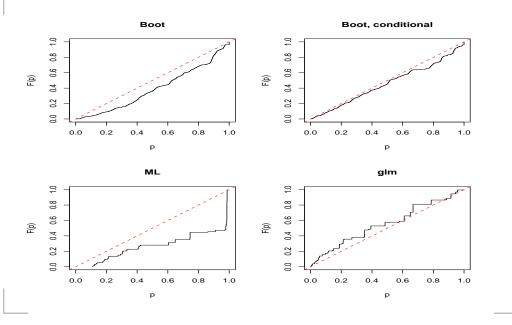
where $\gamma_1, \ldots, \gamma_n$ are *iid* $N(0, \sigma)$.

Hypothesis: $\sigma = 0$.

Simulation specifications

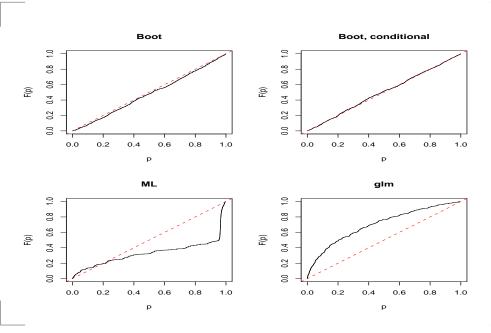
- $\sigma = 0, 0.5$.
- n = 5, 50, 500.
- Four methods:
 - glmmboot, unconditional and conditional,
 - glmmML,
 - glm (naively?).

Null model ($\sigma = 0$); 5 clusters

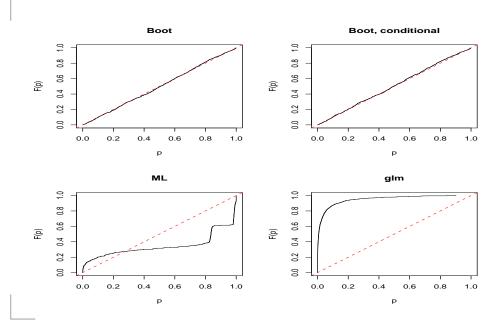


GLM with clustered data - p. 25

Null model ($\sigma = 0$); 50 clusters



Null model ($\sigma = 0$); 500 clusters



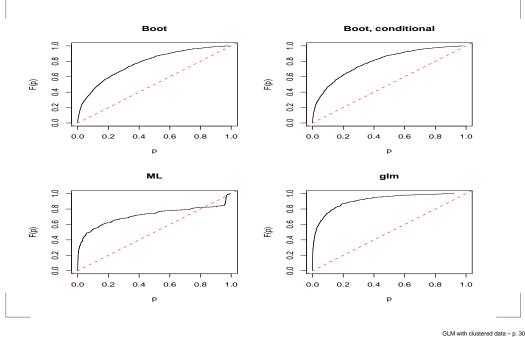
GLM with clustered data - p. 27

GLM with clustered data - p. 26

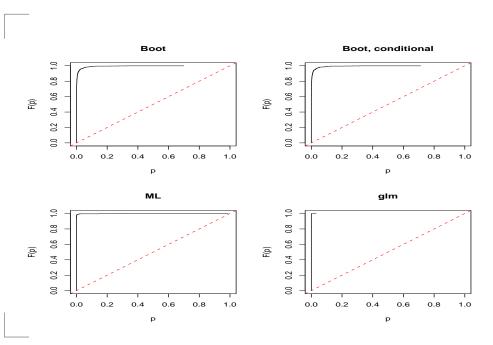
Clustering ($\sigma = 0.5$); 5 clusters

Boot Boot, conditional 0.8 9.0 9.4 9.4 0.2 0.2 0.4 0.6 8.0 0.2 0.4 0.6 0.8 0.0 ML 9: 0.8 9.0 0.2 0.2 0.2 0.4 0.6 8.0 0.2 0.4 0.6 0.8 GLM with clustered data - p. 29

Clustering ($\sigma = 0.5$); 50 clusters



Clustering ($\sigma = 0.5$); 500 clusters



Timings, 5 clusters

```
> system.time(glmmboot(y ~ 1, cluster = cluster,
+ data = timing, conditional = FALSE, boot = 2000))
[1] 0.06 0.00 0.06 0.00 0.00

> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 0.044 0.000 0.044 0.000 0.000

> system.time(glmmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.013 0.000 0.012 0.000 0.000

> system.time(glm(y ~ factor(cluster), data = timing,
family = binomial))
[1] 0.008 0.000 0.008 0.000 0.000
```

GLM with clustered data - p. 31 GLM with clustered data - p. 32

Timings, 50 clusters

```
> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = FALSE, boot = 2000))
[1] 0.529 0.000 0.529 0.000 0.000

> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 0.376 0.000 0.376 0.000 0.000

> system.time(glmmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.079 0.000 0.080 0.000 0.000

> system.time(glm(y ~ factor(cluster),
data = timing, family = binomial))
[1] 0.047 0.002 0.061 0.000 0.000
```

Timings, 500 clusters

```
> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = FALSE, boot = 2000))
[1] 5.208 0.000 5.214 0.000 0.000

> system.time(glmmboot(y ~ 1, cluster = cluster,
data = timing, conditional = TRUE, boot = 2000))
[1] 3.713 0.003 3.719 0.000 0.000

> system.time(glmmML(y ~ 1, cluster = cluster,
data = timing))
[1] 0.611 0.000 0.611 0.000 0.000

> system.time(glm(y ~ factor(cluster),
data = timing, family = binomial))
[1] 27.840 0.593 28.434 0.000 0.000
```

GLM with clustered data - p. 33

glm vs. glmmboot(boot = 0)

Execution times

No. of clusters	glm	glmmboot
5	0.008	0.007
25	0.019	0.008
100	0.182	0.011
500	28.434	0.031
1000	223.288	0.056

<u>Conclusion:</u> Profiling is numerically very efficient.

GLM with clustered data - p. 34