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¢ Analysis of QTL data

Institute of Statistics and Decision Support Systems - modified BIC

University of Vienna — Robust methods

¢ Implementation and Simulations in R
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Locating quantitative trait loci (QTL) ¢ j\liversitat Background

e A gene can obtains different forms (alleles)
Quantitative trait:

evolution occurred in small steps e contribution of genetic effects to total (phenotypic) variation of a trait

characters, that are influenced by many genes (heritability) determines rate at which characters respond to selection.

Many relevant traits are quantitative: height, yield, ... (environmental variance reduces efficiency of response)

Quantitative trait locus (QTL):

gene (functional sequence of bases) that influences

trait value = genetic influence + environmental influence

a certain quantitative trait e partitioning genotypic variance into components with different impact on

selection: additive, non-additive gene effects (epistasis)

Relevant questions: -> dependency on background population

- How many genes influence a trait (How many QTL) evolutionary reason: stabilization of phenotype

- Find exact positions of QTL

(- estimate size of genetic effects) ) .
phenotype: the form taken by some character in a specific individual.
genotype: genetic makeup of individual
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Data from experimental crosses

Genetic map
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Genetic map
Distance between markers is

usually estimated from

1 recombination frequency

1 T If marker is close to QTL, then

marker genotype will be

associated with QTL genotype
(There would be a 1-1

L + correspondence, if there were

no recombinations)

No linkage between

\ chromosomes
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w}gﬁmtat Data matrix for backcross design

Indiv. QT marker.1 | marker.2 marker.m | 50-500 markers
34.3 AA Aa AA
65.4 Aa AA *
23.2 Aa * Aa
45.4 AA AA Aa
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puiversitat Analysis of QTL data

~ 200 - 1000 individuals
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Find NUMBER, POSITIONS, EFFECT TYPES and SIZES of QTL

Challenges:

Robust Methods for QTL Mapping in R

large number of possible models

(main effects + interactions = m + m(m-1)/2 ~ 100 + 5.000)

-> efficient search strategy

-> correct for test multiplicity

deviation from normality of conditional distribution of trait given marker

genotypes (especially when heavy tails or outliers)
recover unobserved / wrong / missing genotype information

confounding of effect types

selection bias for effect sizes, especially for small effects
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Methods for QTL mapping

marker based

-~

ANOVA on single

Lniversitat
wien

markers
multiple regression
univariate < » multiple

- interval mapping - conditional interval mapping strict Bayesian

- composite interval - multiple interval mapping approach

mapping - Bayesian (Sen & Churchill)

estimation of QTL location
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Model selection Lniversitat
wien
aim: identify correct model, not minimise prediction error
-> criterion for inclusion and exclusion of variables
o
e cross validation / bootstrap ?3
c
e AIC: n log (RSS) + 2k/n minimises prediction error g
e BIC: n log (RSS) + k log(n) more conservative than AIC, E
especially for small n §
n: sample size
k = p + g = number of main effects (p) and interaction effects (g) under consideration
RSS: residual sum of squares (assuming normal error distribution !)
-> efficient search strategy
forward selection + backward elimination step
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Multiple regression approach
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Xj;: genotype of the /" individual (out of n) at the j*" marker (out of m).
X

> if individual has genotype AA (homozygous)

- if individual has genotype Aa (heterozygous)

I: subset of the set N = {1,...,m} marker
U: subset of N x N

€ : random error term with distribution f

Lniversitat
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Behaviour of BIC depending on n & # of predictors

number of predictors

—1

Model M;

n: sample size
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large model.
n
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P(BIC)y;, > BICy) <

-> more likely to select

<N-2P(Z > \/l(ﬁ)g(l'l)t)

BICy;: BIC of 1-dimensional

N: Number of 1-dim models

BIC chooses too many QTL

every model has the same

probability to be selected
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. - Comparison of mBIC and BIC i i3
modified BIC Lnversitat
g
Additional penalty term dependent on number of predictors under consideration ©
(Bogdan et al 2004)
g = 5 predictors (+10 two-way interaction terms)
modified BIC o
=
@
—~ e}
mBIC = nlog 5 o BIC
5 3 — mBIC
()
—
()
[oX
. 2
with 2 et
E(p): expected number of main effects °
E(q): expected number of epistasis (=interaction) effects
o
C)_ -
e I I I I I I
E(p) = E(q) = 2.2 controls the Type I error at a level of of 5% (for n = 200)
0] 1000 2000 3000 4000 5000
n
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Deviations from Normality

® Lniversitat : o wniversitit
L wien Robust model selection criterion Ve

e Typically, non-parametric methods based on ranks are used

e Here we use robust regression techniques, in particular M-Estimators:

minimise other measure of distance instead of residual sum of squares.

popular alternatives are: still consistent under quite general conditions on the error distribution

rho.huber, k=0.05 rho.huber, k=1.3
(Martin, 1980)
but performance of BIC", depends on p and error distribution:
for x| > k
for [z < k Jureckova and Sen (1996) derived limiting distribution for
T T T T T T T T T T T T T T
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%)2)3] for M <k rho.bisquare rho.hampel
alb—a+c)/2
alb—a+c)/2— : for b < ‘I‘ <c
PHampel(T) =
alz| — for a < |z| <b
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Limiting Distribution

B Lniversitat isati S universitat
I wien Values for normalisation constant ¢, & ) {5

We showed that

error distr. Huberp—gos Huberp—; 345 Bisquare Hampel

D, =n(logy_ p(Y; — 2ifh) —log ¥ p(Y; — 2/6.))

has the following property:

Normal .267 1.096 1.105 1.037

Laplace 97 436 1.410 1.291

Cauchy * * 2.407

Tukey 925 .35¢ 1.564
with s
and error distribution f(x)
X* 1.145
X2 ood 2! 1.25 1.192
forlL, c,=1
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Robust mBIC niversitat - Simulation Setup

In practice, ¢, and therefore the error distribution f(x) have to be estimated.

2 chromosomes with 11 marker each (m=22)
This leads to a robust version of the mBIC: 200 individuals (n=200)

1 additive effect
mBIC = ¢.nlogd p(Y; — 2i0) + (p + q) logn 1 epistasis effect

error distributions:

Normal, Laplace, Cauchy, Tukey, X2

with
estimators:
L,, Huber (k=0.05) ~ L,, Huber (k=1.3), Bisquare, Hampel
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Simulation Results

Percentage correctly identified effects and false discovery rate
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lersitdt Implementation in R

Lniversitat
wien

Robust regression using procedure rim of package MASS

program structure:
- parameter specification

- generate realisation of genetic setup

estimation of error distribution and c,

in each forward step: estimate likelihood for m + m(m-1)/2 models

- generate output

simulations:
— 1000 replications
- n=200-500, m=20-120
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