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| Statistical Software Has Bugs*
= Estimation bugs (from a survey in 2002):

2 Gauss (ML 4.24): t-statistics for maximum
likelihood estimations were half the correct
values.

0 SAS (SAS 7.0): produced incorrect results for
regressions involving variables with long
names, performs exponentiation incorrectly,
and commits other statistical errors.

0 SPSS (SPSS 8.01) calculated t-tests
incorrectly, and incorrectly dropped cases . °
from crosstabs.

= Data Transfer Bugs
(from a survey of 10 packages)
2 Silent truncation
Dropped observations
Dropped variables
Format transformation
Rounding errors
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* All software has bugs
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‘ Accurate Statistical Computing

= Why be concerned with
accuracy?
2 Bugs
= Inaccuracies
2 Too little entropy
2 All optimization is local

= What can be done?
2 Numerical Benchmarks
2 Entropy Collection
2 Global optimality tests
= Sensitivity Analysis
2 Universal Numeric
Fingerprints
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‘ Correct Software can be Inaccurate

Inaccuracies in Stdevp in Microsoft Excel

= Correct programs can produce
inaccurate results

= Computer arithmetic is subject to
rounding error
= Overflow occurs when an arithmetic
operation yields a result too big for
the current storage type
2 Underflow occurs when an operation
produces a result too small to be
represented
2 Rounding occurs when a result
cannot be precisely represented
2 Special values may result from ill-

defined operations that do not yield
real numbers

2 Often, these errors are processed
silently.

® Accumulated errors can dramatically
affect estimates, inferences, e.g.:

(x- X)’

Digits | 2 8 9 10 15

1| 1000000 | 1000000 [ 1000000 | 10000000000

1 01 001 0001

2 | 1000000 | 1000000 | 1000000 | 10000000000

2 02 002 0002

1| 1000000 | 1000000 [ 1000000 | 10000000000

1 01 001 0001

Values | 2| 1000000 [ 1000000 | 1000000 | 10000000000

2 02 002 0002

1| 1000000 [ 1000000 | 1000000 | 10000000000

1 01 001 0001

2 | 1000000 | 1000000 | 1000000 | 10000000000

2 02 002 0002

1| 1000000 | 1000000 [ 1000000 | 10000000000

1 01 001 0001

2 | 1000000 | 1000000 | 1000000 | 10000000000

2 02 002 0002

1| 1000000 | 1000000 [ 1000000 | 10000000000

1 01 001 0001

2| 1000000 [ 1000000 | 1000000 | 10000000000

2 02 002 0002

SD 0. 0.51 0.00 12.80 1186328.32
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| Fasy Inaccuracy in R | Random Numbers Aren’t

# Three formulas for the standard deviation of the population

= Pseudo Random number generators are assumed
o Deterministic
o Meant to be seeded with true random values
o Generate sequences of fixed length

= Period puts (theoretical) limits on size of sample, before
correlation may occur among sub sequences

> sdp.formula1 <- function(x) { n = length(x); sgrt(n * sum(x*2) - sum(x)"2)/n }
> sdp.formula2 <- function(x) { sum(sqgrt((x - sum(x)/length(x))*2))/length(x) }
> sdp.formula3 <- function(x) { sqrt(var(x) * (length(x) - 1)/length(x)) }

> dat = testMat(50)
> print(rbind(sapply(dat, sdp.formula1), sapply(dat, sdp.formula2), sapply(dat,
sdp.formula3)), digits = 3)
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35 7 9 11 13 15 17 19
[1,] 0.5 0.5 0.48 NaN NaN 265271.1 4.43e+07 NaN 4.3le+ll A basic linear congruential
[(2,] 0.5 0.5 0.50 0.5 0.5 0.5 0.5 0 o0 generator
[3,]1 0.5 0.5 0.50 0.5 0.5 0.5 0.5 0 0
- E S
X, = (aX,*+b)modm
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What can oo wrong with PRNGS? | Hasy Optimization

“ Seed isn't chosen randomly. = Applications of maximum likelihood,

" Too many draws. nonlinear least squares, etc implicitly
= Used for t-dimensional point for t large. assume:

= Draws do not follow a uniform distribution.

= There is a single global optimum
= We’'ll find it.

= Local optima, if they exist, are substantively
e unimportant

Hidden structure to supposed randomness.

We need more entropy!

Use me instead
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Accurate Computing: Why be concerned?

‘Computational Threats to Inference*

Convergence to Local Optim

(algorithmic limitations)

Early Convergence

LL(BIM.X)

(Numerical Stability)

\

Numericaly Induced
Discontinuie.
(Numerical Stability,
“Bugs”, Approximation
Error)

Estimation of confidence
interval around optimum

(algorithmic limitations,
limits of confidence
intervals)

* All optimization is local
Micah Altman, Harvard University
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| Statistical Benchmarks from Accuracy

= Tables of basic distributions

= Supplements NIST StrD, Diehard, TestUO1

Accurate Computing: Benchmark

‘ Statistical Benchmarks

= Statistical benchmark:
feed the computer a set
of difficult problems for pri4
which you know the
right answer

= |f the answers given
back are accurate, you
can have more
confidence
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| Tests of Global Optimality

= Count Basins of Attraction for random starting values. Turing;
Starr (1979); Finch, Mendell, and Thode (1989)

= Take likelihood at random samples of parameter space, de
Haan (1981); Veall (1989).

= Choose, n, samples for the parameter vector using a uniform
density, evaluate likelihood L()

o (1-p) level confidence interval for global max:

# compute log-relative-error (LRE) of qt() results, compared to correct values
data(ttst)
Irg = LRE(qt(ttst$p,ttst$df), ttstSinvt)

# if there are low LRE's avoid qgt() in those areas
table(trunc(Irq))

-iInf 3 4 5 6 7 8 9 Inf
2 1 17 15585143 650 40 7 34

DL L Lmax - Lanmax D
# can use LRE to explore stability of inverse functions (Mt > Lmax AIn _ 1
> p.rand=runif(100000) [ p [

> df=trunc(runif(10000,min=1,max=200)) i
> p.rand=runif(100000) = No guarantees, but acts as a sanity check

> df.rand=trunc(runif(100000,min=1,max=200))
> table(trunc(LRE(p.rand,qt(pt(p.rand,df.rand),df.rand) )))
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| Truly Random
@a® =

“do

sources:
= Local keystrokes and hardware
interrupts resetSeed|()
. . . Set PRNG seed using true random value
= Radioactive decay at Fermilab runift()
True random variates, from entropy pool
(slow)
runifs()

PRNG sequences, periodically reseeded
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Perturbations of Data In Statistical Context

= Cook [1986], Laurent & Cook [1993]
If L and wwell behaved...

= Straightforward mapping between perturbation of
data and perturbation of model/

= Small normally-distributed noise added to data >
small shift to L

= Cook defines WOI:St case likelihood distance:
LD(w) = 2|Lld)- Ll6,
Can be interpreted in terms of

l012L{6]- L(0)|<x2(p)
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| Sensitivity Analysis

= Replication on multiple platforms

= Sensitivity to PRNG choice

= Sensitivity to choice of optimization algorithm
= Sensitivity to data perturbations
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Data Perturbations Interpreted in Other
Frameworks

= Beaton, Rubin & Baron [1976]; Gill, et. al [1981];
Chaitin-Chatelin, F, and Traviesas-Caasan [2004]

= Perturbation in data as sensitivity test for computational
problems

= Belsley [1991]; Hendrickx J, Belzer B, te Grotenhuis
M, Lammers J (2004)

= Perturbation/permutation of data as collinearity diagnostic

Bottom Line:
If the model is sensitive to a little noise, beware!
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Accurate Computing: Diagnostics

| Computational Sensitivity Analysis | Sensitivity Analysis With Zelig

> zelig.out = zelig(Employed ~ GNP.deflator + GNP + Unemployed +
> plongley = sensitivity(longley, 1m, Employed ~ .)

1. Choose nOISG > print(summary(plongley), digits = 4) [ | Zelig provides + Armed.Forces + Population + Year, "ls", longley)

. > perturb.zelig.out = sensitivityZelig(zelig.out)
(optional)

Normal Sensitivity of coefficients to perturbatiox.xs: u w a Uniform SyntaX to
. mean stdev min 2.5% 97.5% max
o Uniform (Intercept) -3.284e+03 9.142e+02 -4.972e+03 -4.729e+03 -1.089e+03 -7.201e+02 models
Q Repeated GNP.deflator 1.129e-02 8.981e-02 -4.202¢-01 -1.2556-01 1.484e-01 1.751e-01 > setx.out = setx(perturb.zelig.out, Year = 1955)
GNP -2.960e-02 3.514e-02 -9.150e-02 -8.951e-02 5.671e-02 7.823e-02 a 1 1 > sim.perturb.zelig.out = psim(perturb.zelig.out, setx.out)
Samples Unemployed -1.953e-02 5.265e-03 -3.113e-02 -3.011e-02 -7.942e-03 -5.133e-03 Easy predICtIVe
o Truncated Armed.Forces -1.038e-02 2.308e-03 -1.402e-02 -1.387e-02 -3.675e-03 ~2.910e-03 S|mUIat|0n
Qa +/_ Epsilon Population -7.133e-02 2.061e-01 -5.716e-01 -5.462e-01 2.365e-01 4.703e-01
. Year 1.728e+00 4.661e-01 4.262e-01 5.987e-01 2.459e+00 2.595e+00 . .
2 Permutation Zelig + Accuracy
a . (Intercept GNP.deflat GNP Unemploye Armed.Forc Populatiol Year
2. Add noise S H T < o | - Easy to analyze > plot(sim.perturb.zelig.out)
S H - _ o LR ]
T S A P =
3. Analyze I : = 1 $ a g | ok o | SenSItIVIty Of ##4x 30 COMBINED perturbation simulations
! o T} | i ° I ~ .
4. Repeat s | i g | 2 4 S o pred|Cted Values Expected Values: E(Y|X)
. 3 - I =
5. Summarize v S Ch £ - S - 2 o]
g ] i Q@ T | e | g ]
i T S R 8o ,
o | <+ I g | = T © < i ' i ’ T ’ T
S ? ] h = S o § o 7 64.8 65.0 65.2 65.4 65.6 65.8 66.0
7 i} ' e 7
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Universal Numeric Fingerprints ‘ Trust, but verify...

14 4 21 . 121 ) Verify:

1292 9] ... 212 > library (UNF)

16 2 12 ... 204 > v = 1:100/10 + 0.0111

10 4 5 ... 311 > print (unf (v, ndigits = 7))

03223 . 9 [1]"UNF:4:7,128:6kK165059g5dswiRGEM 1. Simulations behave properly with true random samples
025 91 ... 212 | = ZNQRI4053UZq380:0Be? | 7yyy03gwyBVvuBzioK/df720=" propery P
058 9l .. Ol > summary (unf (longley)) 2. Estimated quantities of interest are not sensitive to noise
191 72 ... 104 [1]"UNF:4:7zg50Q08/mP7z3m2E+mwo0JndVM

PoIoro T 8f10ommbutvvgDKI10E=" 3. Optimization not sensitive to starting

122 91 ... 212

4. Reformatting data did not alter it

= Same UNF regardless of
a
a gﬁglﬁg system Don’t Panic*: Most results remain robust.
o statistical software,database, or spreadsheet software.
= UNF’s combine:
4 generalized rounding (dessication)
2 normalization (canonicalization)
2 fingerprinting (cryptographic hash, e.g. SHA256)
2 presentation (base64)
= UNF’s available for R, Stata, SAS, and standalone use *©
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Resources

NUMERICALISSUES

Software IN| STATISTICAL
“‘accuracy” and “UNF” are on CRAN now! SOAPUTLIG £
THESOCIAL
SCIENTIST
Books
9 Numerical Issues in Statistical Computing ... n—
Altman, Gill, McDonald (2003) et i

Michael P. McDonald

0 Elements of Statistical Computation

James E Gentle (2002)

(And the rest of the computational statistics series)
9 Numerical Methods in Economics

Kenneth L. Judd (1998)

Books, journals, mailing lists, software:
<http://www.hmdc.harvard.edu/numerical_issues/>

Pragmatic Statistical Computing: Probing Farther
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