
Embedding R in Windows applications,

and executing R remotely

Thomas Baier and Erich Neuwirth

February 15, 2004

R is object oriented, and objects are the standard way of packing analysis
results in R.

Many programming environments and applications programs in Windows
can act as as (D)COM clients, which is the standard way of accessing objects
exposed by (D)COM servers. Particularly, all Microsoft office programs are
(D)COM clients and therefore can access any (D)COM server. Therefore, in
encapsulating R as a (D)COM server is a natural choice to make R functionality
accessible to other programs.

To embed R in other programs, therefore, one of the key questions is what
kind of objects are exposed to these applications hosting R, and how these
objects are exposed.

There are two different routes that can be taken here. We can either choose
to expose R objects “as is”, with all their richness, or we can choose a min-
imalist approach and only offer objects of types which can be handled easily
by programs which normally do not employ rich object types for the data they
usually handle.

The difference can be very well illustrated when R is embedded in Excel. A
spreadsheet essentially has 6 data types, scalars, vectors, and matrices of either
numbers or strings. If we want to make R functionality a part of the spreadsheet
functionality, it is sufficient that the R (D)COM server exposed this type od
data objects.

On the other hand, VBA (the programming language built into Excel) allows
to work with any type of object. Therefore, the whole R object model, and even
user-defined new object types, can be made accessible in VBA, and therefore
be used in Excel.

The question is, how is R being used in connection with Excel. When the
programmes “thinks R” and uses Excel just as a convenient data source and
data editor, the full object model makes sense. Then, programming is done
in R and VBA, and data and results are just transferred from time to time
between worksheets and R. This way, Excel becomes a convenience item for R,
but conceptually R is the center of the programming model.

If we want to use R as an extension of Excel worksheets, and only as sub-
routines accessible from VBA, the minimalist approach seems more adapted. In

1



this case, calls to R will only return objects which can directly be embedded
in worksheets. One of the key concepts or spreadsheet programs is automatic
recalculation. Using data types which can immediately be embedded in the
worksheet makes R calculations become part of Excel’s automatic recalcula-
tion, thereby offering facilities not offered by R itself. Using only simple data
types like arrays allows very fast implementation of the interface. Using the
full R object model adds another level of complexity and therefore probably
slows down calculation considerably. Calculation speed is very important for
reasonable automatic recalculation, therefore this approach R leads to a less
natural spreadsheet extension. Additionally, if the R server is executed on an-
other machine than the client, transfer speed also plays an important role, and
using only native Windows data types speeds up things considerably.

The relative merits of the 2 different approaches also heavily depend on
the experience of the programmer using R as an embedded library. To be
able to use the full R object hierarchy, one has to be rather knowledgeable
about R’s object model, and understand the relationships between different
kinds of objects. Making R objects fully accessible in applications really puts
just another kind of syntactic glue (in the case of Excel the glue is VBA) on top
of R’s objects.

Using the minimalist approach allows simpler access to R functions in other
applications. The interface to R can be kept much simpler. Of course, the price
to pay is that we do not have the full richness of R accessible in the application
environment directly. It is, however, always possible to encapsulate everything
in R code which only returns the simple data types.

If we separate R core functionality, especially the statistical methods needed
in an application, from the data handling and interface code, it makes sense
to write the core functionality as R functions returning only simple data types.
Then, all the additional code (GUIs, spreadsheet functions) can be written
without detailed knowledge of the R object hierarchy.

Another problem when we embed R into another application is who of the
two partners is the authority for the state of data objects. When we transfer
data to R, we assign the data to variables. What happens if the data in the
hosting application is changed? Will these changes automatically propagate to
R? As soon as we use variables in both applications, we have to be very careful
about keeping variables synchronized.

If we apply a strict functional model, R only exposing (stateless) functions,
and not (stateful) data objects, then we elegantly avoid this problem. To be
able to apply that model, all the functions supplied by R have to return data
types which can immediately be represented in the hosting application.

We will show some applications with both approaches, and we will demon-
strate how the different approaches influence calculation speed.

2


