
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

R: Windows Component Services

Integrating R and Excel on the COM

Layer

Thomas Baier

Abstract

On the Windows platform a standardized model for component services
and interprocess and inter-machine communication has been established by
Microsoft—COM. As many applications provide their own or use third party
COM services, extending R by means of COM interfaces is a natural way for
integration of R into the user’s desktop.

This paper discusses the mechanisms available to R users for integration
of R into Windows applications and vice versa.

As an example for this integration, we will show how to utilize the COM
services provided by Excel from R and how to use R functionality from within
the spreadsheet’s macro language VBA.

1 COMponent Services

Reusing software components across programming languages has always been a
major problem. Even within the same programming language problems will show
up when combining compilers from different vendors, mostly due to incompatibilities
in the language implementation, the code generation or just the runtime library (e.g.
used for dynamic memory allocation).

Different approaches to the problem of component reuse have been defined with
different purposes in mind. The CORBA1 specification has been developed in the
early 90’s by the Object Management Group (see [4]) and is supported by many
vendors on different platforms. On Windows, a very similar—but incompatible—
object model has been developed by Microsoft, COM2. The infrastructure for COM
now is part of the operating system and using this model for sharing components
(“sharing implementation”) is accepted practice.

1Common Object Request Broker Architecture
2Component Object Model



DSC 2003 Working Papers 2

Both, COM and CORBA, are very similar. Both define standards for exposing
components using public interfaces. The interfaces contain methods (functions) bot
do not contain object data. Data has to be exposed via functions (properties, prop-
erty access functions). The internal implementation of the components themselves
are up to the implementor or compiler vendor. Part of the specification of course
also deals with invoking methods of an object. Objects can run on the local machine
or even remotely, where the component subsystem (COM or CORBA) takes care
of the required network communication.

In addition to public interfaces and local or remote function calls, COM and
CORBA define mechanisms for object creation and lifetime management and a set
of well-defined data types.

The major idea behind COM is to provide a standard (see [2]) for interoperability
of components from different software vendors. A COM component (COM object)
is provided by a COM server application. COM servers can be implemented in
different ways. According to the application requirements one must find a balance
between safety and speed and choose from one of these:

• A COM object can be instantiated like any other library object in the memory
space (process boundaries) of the client application. This provides the fastest
possible access to the COM object with the least possible overhead—similar
to calling a virtual function on a C++ object or calling a C function by a
function pointer. This kind of implementation is called an In-Process Server.

• Next, a COM object can be run in a different process. Calls to this COM
object will lead to some interprocess communication (transfer of data from
one memory space to another, invoking the function). This provides more
safety for both the client and the server application. If the client fails, the
server continues to run, if the server fails, the client can handle this, too. This
is called an Out-of-process Server.

• DCOM3 also provides mechanisms for accessing COM objects running on
remote servers. DCOM takes care of the required network communication
and synchronization. This is similar to an out-of-process, but, again, one
magnitude of order slower.

In addition to the “plain” COM standard, Microsoft has defined some addi-
tional specifications for various purposes. These specifications e.g. cover specific
components used in transaction processing (COM+), user interface controls as COM
objects (Active X controls) or scripting languages (Automation).

2 Accessing an Application’s Services

As shown in the last section, COM objects are provided by a so-called “COM server”
application, while they are used by a “COM client”.

Using the add-on package “rcom”, one can—very similar to what is known from
Microsoft Office—use R to access services and components provided by other appli-
cations and therefore act as a COM client. The approach taken here is very similar
to the integration of COM servers into other systems (e.g. XLisp-Stat [6]).

3Distributed COM



DSC 2003 Working Papers 3

2.1 Utilizing Excel’s COM services

Excel as a spread-sheet application provides very intuitive means for entering data
in tabular form. But while Excel is perfectly suited for entering and visualizing data,
its’ computational engine itself can only be used for very simple computations.

This is contradictory to R, which provides a very strong computational engine
and a powerful language for writing your own functionality, but on the other hand
is not as well suited for building a GUI. Even if there are some means for entering
data, in many cases, Excel just is the “natural” tool for doing data entry and
manipulation on the Windows desktop and familiarity with the user interface and
the application itself plays a very important role for the users to be comfortable
with a user interface.

Figure 1: Microsoft Excel Object Model

Fortunately, Excel provides many COM components and services to all appli-



DSC 2003 Working Papers 4

cations acting as a COM client. Although in most cases, Excel’s object model (see
figure 1) is used by VBA4 scripts running inside Excel itself, by providing this model
as COM objects, every custom application (including R) can make use of Excel’s
functionality.

2.2 Retrieving Data From Microsoft Excel

To find out how to use Excel as a medium for data entry (and presentation) for R,
consider a simple example: the user has entered a data vector containing 20 floating
point values in the currently active sheet in Microsoft Excel. The values are in cells
A1 to A20. We now want to

• read the data vector from Excel into an R variable (val1)

• compute the square of each element in val1 and store the resulting vector in
val2

• write val2 (same dimensions as val1) back to Excel into cells B1:B20 and at
last,

• create a line plot showing val1 and val2 in a single diagram in Excel shown
on its own sheet.

When browsing Microsoft’s documentation for the Excel Object interface (see
[3]) we can find out that we have to use

• Excel’s Application object (as the root of our object model) to get access to
the currently active sheet.

• Then we have to define two Range objects for our data vectors (range1 for
cells A1 to A20, range2 for cells B1 to B20). Accessing the data (reading and
writing) is just a matter of getting/setting the Range’s Value property.

• At last we create a new graph for the range object A1:B20 and set it to display
the data as a Line Graph.

The following section will show how to achieve this from R code using the package
rcom.

2.3 Accessing Excel from R

From rcom’s point of view, the world of COM consists of objects, functions and
properties.

Objects are provided by COM servers (like Microsoft Excel). Properties rep-
resent the internal state of an object. Functions on the other hand, provide the
functionality of the object.

Properties are the object’s variables. Properties can be set to some value or
R can retrieve a property’s value. Properties can be as simple as scalar values or
can represent whole COM objects (e.g. Excel’s Application object has a property
called ActiveSheet which holds a reference to the currently active sheet edited by

4Visual Basic for Applications



DSC 2003 Working Papers 5

the user). Properties also can be indexed by number or by string values to identify
a specific part of the property (e.g. see the Range property used in section 2.3.2).

Functions (methods) of a COM object can be invoked. You can pass any number
of parameters (again, as simple as numbers, strings or as complex as whole COM
objects). Functions also can return a result.

2.3.1 Getting a Handle to the Excel Application

When accessing any of Excel’s functionality, we have to first get a handle to Ex-
cel’s Application object. rcom provides two different means for getting an object
handle:

• com.object.create will create a new instance of the COM object, whose
class name is passed to the function, whereas

• com.object.get will search for the system for a handle to a globally registered
instance of the passed object class name.

To get a handle to an already running Excel application, we use the function
com.object.get. Afterwards, the application object is queried for the currently
active sheet the user is editing.

excel<-com.object.get("Excel.Application")
sheet<-com.property.get(excel,"ActiveSheet")

2.3.2 Retrieving a Data Vector from Excel

To retrieve a data vector for cells A1 to A20, Excel requires to use a Range object.
The range object then is simply queried for its value, which is stored in val1.

range1<-com.property.get(sheet,"Range","A1","A20")
val1<-as.double(com.property.get(range1,"Value"))

Memory management is done automatically. COM’s reference-counted mem-
ory management scheme is integrated into R’s garbage collection mechanism. See
section 2.4 for more information on this topic.

2.3.3 Writing Data To Excel

Writing data back to Excel is as simple as reading the data and very similar in code:

val2<-val1 * val1
dim(val2)<-c(20,1)
range2<-com.property.get(sheet,"Range","B1","B20")
com.property.set(range2,"Value",val2)

2.3.4 Create a New Chart

As now the new data is displayed in Excel, Excel’s built-in reporting functionality
is used to add a graph displaying both val1 and val2 in a simple line graph.

To create a new graph, simply invoke the function Add on the active workbook’s
chart collection.

wb<-com.property.get(excel,"ActiveWorkbook")
chart<-com.invoke(com.property.get(wb,"Charts"),"Add")



DSC 2003 Working Papers 6

2.3.5 Adjusting the Chart’s Properties

Setting the chart’s properties is easy as well. The only thing to take care of is
that the Excel documentation uses symbolic names for various constants which are
available in Excel’s VBA implementation. These are currently not available using
rcom, so you have to directly use the expansions of these constants.

com.property.set(chart,"ChartType",65)

Finding out which are the numbers the constants are mapped to is possible by
using a simple type library browser (e.g. OLE View provided by Visual Studio) to
inspect Excel’s data type information (type library).

In the above example, e.g. 65 stands for the constant xlLineMarkers.

2.4 Some Notes on Reference Counting

While memory management inside R is handled automatically by a garbage col-
lector, which will re-use the memory allocated by an object at some time when no
more references to this object exist, COM follows a strategy of explicit reference
counting.

Every single COM object implements the functions AddRef() and Release()
which are used to increment and decrement the reference count for the object. As
soon as the last reference is released and therefore the internal reference count of
the COM object reaches 0, the object gets released immediately.

rcom integrates COM’s reference counting scheme into R’s garbage collector.
When first a COM object gets known to R, the object’s AddRef() function is called
by the COM framework. As soon as the last reference to the object is released,
R’s garbage collector is free to release and reuse the memory belonging to the
COM object (in R’s memory space). When the object is garbage collected, it’s
Release() function is called by the COM framework again, which can cause the
object (at server side) to be deleted.

It has to be taken into account, that COM objects accessed by rcom are not
released immediately when the last reference to the object vanishes. If you want to
make sure an object gets deleted properly at some specific point in time, you should
take care to manually set the references to 0 for global variables and afterwards
invoke R’s garbage collector by calling gc().

3 Providing COM Services

The previous section showed, how R can utilize services provided by other applica-
tions in the form of COM objects. While this will allow an R-centric integration
of R with other applications running on the Windows platform, this is only part of
the solution.

In the same way as R can get access to internal resources of Excel, using Excel
e.g. for data entry and reporting, it is required, that third party applications can
get access to R—both its’ data and its’ functionality.

The example as depicted in section 2.2 on page 4 is probably not the way most
users will want to work.

In fact, the most natural way for solving the problem of entering data in Excel
and using just R’s computational engine would be to hand control over to Excel



DSC 2003 Working Papers 7

itself. Excel, as well as many other applications on the Windows platform, is ex-
tendible by using a macro language called Visual Basic for Applications. One can
create macros (and much more) in VBA and add these macros e.g. to the user
interface of Microsoft Excel. Users then can access these macros by means of e.g.
menu items in the main menu, a context menu or even toolbar buttons.

As control is in the hands of Excel, this requires R to act as a COM server,
providing COM objects to its clients.

3.1 R COM Server Interface

The general approach to this topic is to define COM interfaces which will allow any
clients to utilize R’s data space and functionality.

In principle, the following functionality is required

• transfer a data item (scalar or array/matrix) from a client application to R
and assign it to some variable/identifier,

• retrieve data from R identified by some variable name,

• call functions running in the name and data space of R.

A COM interface providing the functionality as shown above already has been
defined (see [1]). In addition to the functionality shown above, the interface provides
functionality e.g. for house-keeping and error-handling.

In the following, most of the functionality provided by the COM interface is
shortly discussed. The interface definition of the functions is written in Microsoft’s
IDL syntax.

3.1.1 Data Exchange

COM defines a generic data type called VARIANT which can in principle hold any
scalar or compound data type—even COM objects.

As there is no common representation in the COM system of something like a
data.frame or a list, these type are currently not supported.

HRESULT GetSymbol([in] BSTR bstrSymbolName,
[out,retval] VARIANT* pvData);

HRESULT SetSymbol([in] BSTR bstrSymbolName,
[in] VARIANT vData);

Variables of all supported data types can be transferred from R to any client
application using GetSymbol(), where the first parameter represents the name of a
symbol in R’s global namespace.

Transferring objects (data) from the COM client (e.g. Excel) to R and binding
this data with a symbol is achieved using SetSymbol().

3.1.2 Invoking Functions in R

As sometimes R functions/expressions can return a large amount of data, there are
two different functions provided for evaluating an expression in the global context
of the R interpreter.



DSC 2003 Working Papers 8

HRESULT Evaluate([in] BSTR bstrExpression,
[out,retval] VARIANT* pvData);

HRESULT EvaluateNoReturn([in] BSTR bstrExpression);

The only difference between Evaluate() and EvaluateNoReturn() is, that the
latter function will discard any result of the evaluation, therefore saving the prob-
ably time- and memory-consuming transfer of the result to the caller.

Calling one of these functions is like typing the expression at the R command
prompt and evaluate it.

3.1.3 Initialization and Termination

In case R is started from a client application, there is are explicit functions clients
use to initialize and terminate a session with R.

Init([in] BSTR bstrConnectorName);
HRESULT Close();

Before calling Init(), the client must not do any data transfer or evaluation in
the context of R. The same holds true after calling Close().

The parameter passed to Init() makes it possible to optionally pass parameters
to the R process wich would normally have been passed on startup (using command
line switches).

3.1.4 Error Handling

As using R as a COM server can cause many non-trivial problems for a client
application (e.g. failure of some COM function-calls), there are some functions
in the interface especially dedicated to error-handling. Error-handling is a critical
part of this interface, to some extent because the strings passed to Evaluate*() or
Get/SetSymbol() cannot be checked at “compile time” for syntactic or semantic
errors.

HRESULT GetErrorId([out,retval] LONG* pulErrorId);
HRESULT GetErrorText([out,retval] BSTR* pbstrErrorText);

Every single function can return one of the pre-defined error-codes (e.g. “symbol
not found”). For use with automation clients (e.g. VBScript etc.) the last error
id can also be retrieved by calling GetErrorId(). Additionally, a string in english
language describing the error can be retrieved by calling GetErrorText().

This minimum diagnostics interface will allow the developer/user to find the
source for most errors and fix the problem. See table 1 on page 9 for some of the
more common error codes and the descriptive text for these.

3.2 R as an Invisible Computational Backend

One of the advantages of COM is, that it allows interface-based programming. The
COM client-applications don’t directly “program” against a library or something
similar, but they use a COM interface. This interface defines a set of functions (and
properties) every single implementation of the interface must provide.

The interface is defined independently from the implementation and the COM
system allows multiple implementations for the same interface.



DSC 2003 Working Papers 9

Code Error Text
0x80040010 installation problem: interpreter interface version mis-

match
0x80040011 installation problem: interpreter version mismatch
0x80040012 installation problem: unable to load interpreter interface
0x80040013 installation problem: unable to load connector
0x80040014 installation problem: invalid connector library
0x80040015 installation problem: interpreter initialization failed
0x80040016 invalid connector name specified
0x80040020 unexpected fatal error in back-end implementation. release

the object!
0x80040007 symbol not found
0x80040008 invalid expression
0x80040009 incomplete expression
0x8004000a unsupported data type requested
0x8004000b evaluation stopped because of an error
0x80040001 invalid argument passed in function call
0x80040005 interpreter already initialized
0x80040006 interpreter not initialized

Table 1: Common Error Codes returned by R COM Server

This is a feature of COM which is used by R’s COM services. While just a single
interface (IStatConnector—excerpts from the interface definition are shown in
section 3.1)—is defined, which will then provide any COM client with the possibility
to access R’s data and functionality, different implementations have been created
for different applications.

As said before, the client application programs against the object’s interface,
and it is up to the client application, which implementation—which COM server—
to choose then. The concrete implementation of the interface to be used is identified
by its class id. This is a unique identifier associated with every single COM object.
In addition to the class id, which is unique, but not really an identifier in a human-
readable form, every COM server is also identified by a so-called program id, which
is a string and can easily be remembered by the programmer.

On the one hand, there is a stand-alone COM server, which has already proven
successful in many applications (e.g. see [5]). It is provided as an add-on package
to R for Windows and has to be installed separately. This implementation is avail-
able from CRAN at http://cran.r-project.org/contrib/extra/dcom/ and can
provide full integration of R into a custom application.

The goal of this implementation is to fully embed R into a custom application,
e.g. into Microsoft Excel or any other application acting as a COM client.

Some examples of concrete applications of this COM server I know of are:

R/Excel Interface This interface has been done by Erich Neuwirth (see [1]). It
provides full embedding of R into Microsoft Excel and makes it possible to
use R as the computational back-end while still preserving Excel as the only
user interface.

Medieval Chant Analysis This is software system supporting the analyses of



DSC 2003 Working Papers 10

manuscripts for medieval chants done by Brian D. Ripley and Ruth M. Ripley.
The system is written in Visual Basic and provides an easy-to-use front-end
to inexperienced computer users. The complexity of both a database system
behind the application and R are completely hidden from the user.

To really achieve the goal of embedding R as the computational engine into
custom applications, the COM interface also defines some additional functions to
be used here:

• Active X controls for displaying R text output (but not input) can be put
inside your application. R then can perform text output directly at some
reserved place (e.g. this is then where the output of print() statements will
show).

• Another Active X control is provided as an area for R to display graphics
output. Put on a form, R’s graphical capabilities (e.g. plot()) can be used
and the output is redirected to a place inside the custom application.

3.2.1 Accessing R from Excel

From the Excel point of view, R has to act as a COM server. To implement the
example depicted in section 2.2 letting Excel control R, we have to use VBA. What
we have to do is

• get a handle to an R interpreter

• transfer the Range object for cells A1 to A20 to R

• compute the results in R and get back these results

• the results then are stored in cells B1 to B20

Creating the graph in Excel is not considered here, but is similarly easy as shown
before.

3.2.2 Getting a Handle to R

To access R, we have to create a COM object representing R. This is very similar
to what we did before (see section “Getting a Handle to the Excel Application” on
page 5) to access Excel.

Dim R As StatConnector

Set R = New StatConnector
R.Init "R"

The code shown above is in Excel’s macro language Visual Basic for Applica-
tions. This language is very similar to Visual Basic and provides a full-featured
development environment for Excel Macros (including e.g. a dialog editor, a debug-
ger etc.).

First, an object for accessing R is created (the variable name referring to this
object is R, the object’s class is StatConnector), then this object is initialized.
After the call to Init(), the R interpreter can be used.



DSC 2003 Working Papers 11

3.2.3 Writing Data to R

To transfer the data from the first range to R and store it into val1 we have to use
the following code

Dim range1 As Range
Dim val1(1 To 20) As Double
Dim i As Integer

Set sheet = Application.ActiveSheet
Set range1 = sheet.Range("A1", "A20")

For i = LBound(val1) To UBound(val1)
val1(i) = range1(i).Value

Next i
R.SetSymbol "val1", val1

Unfortunately, the Value property of the Range object returns an array of
VARIANTs, which is currently not directly supported by the COM server’s SetSymbol()
function. Therefore, the explicit conversion to an array of Doubles (see the For ...
Next loop) has to be applied.

3.2.4 Computing the Result and Transferring Back to Excel

Next, EvaluateNoReturn() is used to compute the result as before and store it in
val2.

Dim range2 As Range

Set range2 = sheet.Range("B1", "B20")
R.EvaluateNoReturn "val2<-val1 * val1"
R.EvaluateNoReturn "dim(val2)<-c(20,1)"
range2.Value = R.GetSymbol("val2")

The call to GetSymbol() then transfers the data back to Excel and directly
stores the values in the Range object.

3.3 R as COM Server and Client Side by Side

The full integration of R into a custom application undoubtedly has many ad-
vantages. One of the most appealing fact is, that R—both as a system and its
complexity for many users—are completely hidden from the user’s point of view.
The user mostly even doesn’t know, that the real work behind the scenes is done
by R.

On the other hand, it can be desireable for advanced users to have both COM
client and COM server running side by side. E.g. one could use Excel for data entry
and send data from Excel to R using R’s COM server, then switches over to R and
types some commands at the command line to use the data.

This is possible using a second implementation of R’s COM interface which has
been shown in section 3.1. The previously mentioned package rcom (see section
2 on page 2) not only provides functions for R to act as a COM client but also
automatically registers an additional COM server for the running R process.



DSC 2003 Working Papers 12

As soon as the package is loaded, R’s internal COM server is registered at the
system and R can be accessed by other applications.

Using the stand-alone COM server described in section sec:statconnector nor-
mally every single client application starts its own COM server and gets its own
instance of R. Two different clients then will then have a different data and function
space to use.

The internal COM server behaves different. This server is shared for all clients.
The first R process loading rcom will register itself as a COM server for this machine.
All client applications using this COM server will have access to the same data and
function space.

In addition to that, adding graphics devices or text/error output devices (the
ActiveX controls provided with the stand-alone server) is silently ignored at the
moment.

Translating our previous example from using the stand-alone COM server to
using the internal COM server provided by rcom will follow this strategy:

• The user enters data in Excel in cells A1 to A20. Then the user sends the data
from Excel to R’s internal COM server

• Afterwards the user switches to the R window, computes the result and sends
this result back to Excel.

3.3.1 Coding in Excel: Sending Data to R

The solution described above is implemented partially in VBA:

Dim R As StatConnector
Dim range1 As Range
Dim val1(1 To 20) As Double
Dim i As Integer

Set R = New InternalConnector
R.Init "R"
Set sheet = Application.ActiveSheet
Set range1 = sheet.Range("A1", "A20")

For i = LBound(val1) To UBound(val1)
val1(i) = range1(i).Value

Next i
R.SetSymbol "val1", val1

The code looks nearly the same as before. The call to Init() can be removed.
If not, it will return a success code (no error) S FALSE.

How does Excel know, which COM server to use? The code looks the same,
only creating the COM server (New InternalConnector) is different.

In Excel, a reference to the COM server to use is added in the GUI part of the
system. In these two cases, just different references to different COM servers are
assumed.

Additionally, one can use the server’s program id to directly specify in code
which COM server to use. For example, you can replace the creation of the COM
server with something like



DSC 2003 Working Papers 13

Set R = CreateObject("StatConnectorSrv.StatConnector")

if you want to use the stand-alone COM server. To use R’s internal server
(provided by rcom), type

Set R = CreateObject("RCOMServerLib.InternalConnector")

The rest of the client application is still the same.

3.3.2 Computing and Sending Back the Results

After the VBA code shown in the last section has been executed, in R’s symbol
space there’s a global symbol val1. Now we can switch over to the R window and
use this symbol there. The result gets computed and is sent back to Excel using
R’s COM client functionality:

excel<-com.object.get("Excel.Application")
sheet<-com.property.get(excel,"ActiveSheet")
val2<-val1 * val1
dim(val2)<-c(20,1)
range2<-com.property.get(sheet,"Range","B1","B20")
com.property.set(range2,"Value",val2)

4 TODOs for a Better Integration

This paper has described some low-level mechanisms provided for R to act as both
a COM client and a COM server. While this is all required for connecting R to any
COM client or server, the interfaces are not what user’s will expect.

As an example, I would like to look at an integration of R and Excel. The
work done by Erich Neuwirth to integrate R’s COM servers into Microsoft Excel’s
user interface (see [1]) clearly shows the right direction for integration. The same is
currently work in progress for the R side, where an Excel-specific package is created,
providing high-level functionality to access Excel. The interface rcom currently
provides is not as user-friendly as an R-Excel interfaces should be.

References

[1] Thomas Baier and Erich Neuwirth. Embedding R in standard software, and
the other way round. In Kurt Hornik and Friedrich Leisch, editors, DSC 2001
Proceedings of the 2nd International Workshop on Distributed Statistical Com-
puting, http://www.ci.tuwien.ac.at/Conferences/DSC-2001/, 2001. ISSN: 1609-
395X.

[2] Microsoft Corporation and Digital Equipment Corporation. The component ob-
ject model specification. Technical Report 0.9, Microsoft Corporation, October
1995. Draft.

[3] Microsoft Corp. Microsoft Excel 2000. In Microsoft Office 2000 Developer Object
Model Guide, MSDN Library. Microsoft Corp., July 2001.



DSC 2003 Working Papers 14

[4] Inc. Object Management Group. Common object request broker architecture:
Core specification. Specification 3.0, Object Management Group, Inc., Nov.
2002.

[5] B.D. Ripley and R.M. Ripley. Applications of R clients and servers.
In Kurt Hornik and Friedrich Leisch, editors, DSC 2001 Proceedings
of the 2nd International Workshop on Distributed Statistical Computing,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/, 2001. ISSN: 1609-395X.

[6] Luke Tierney. Connecting Lisp-Stat to COM. Journal of Computational and
Graphical Statistics, 9(3):459–469, September 2000.


	COMponent Services
	Accessing an Application's Services
	Utilizing Excel's COM services
	Retrieving Data From Microsoft Excel
	Accessing Excel from R
	Getting a Handle to the Excel Application
	Retrieving a Data Vector from Excel
	Writing Data To Excel
	Create a New Chart
	Adjusting the Chart's Properties

	Some Notes on Reference Counting

	Providing COM Services
	R COM Server Interface
	Data Exchange
	Invoking Functions in R
	Initialization and Termination
	Error Handling

	R as an Invisible Computational Backend
	Accessing R from Excel
	Getting a Handle to R
	Writing Data to R
	Computing the Result and Transferring Back to Excel

	R as COM Server and Client Side by Side
	Coding in Excel: Sending Data to R
	Computing and Sending Back the Results


	TODOs for a Better Integration

