- using R version 4.4.0 RC (2024-04-16 r86468 ucrt)
- using platform: x86_64-w64-mingw32
- R was compiled by
gcc.exe (GCC) 13.2.0
GNU Fortran (GCC) 13.2.0
- running under: Windows Server 2022 x64 (build 20348)
- using session charset: UTF-8
- checking for file 'HeterFunctionalData/DESCRIPTION' ... OK
- checking extension type ... Package
- this is package 'HeterFunctionalData' version '0.1.0'
- package encoding: UTF-8
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking whether package 'HeterFunctionalData' can be installed ... OK
See the install log for details.
- checking installed package size ... OK
- checking package directory ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [0s] OK
- checking whether the package can be loaded with stated dependencies ... [0s] OK
- checking whether the package can be unloaded cleanly ... [0s] OK
- checking whether the namespace can be loaded with stated dependencies ... [0s] OK
- checking whether the namespace can be unloaded cleanly ... [0s] OK
- checking loading without being on the library search path ... [0s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [3s] OK
- checking Rd files ... [1s] NOTE
checkRd: (-1) eu.Rd:24: Lost braces; missing escapes or markup?
24 | This function calcualtes the residual $x_{ijk}-bar{x}_{ij.}$ for the kth replication from the ith group at jth time point.
| ^
checkRd: (-1) eu.Rd:24: Lost braces
24 | This function calcualtes the residual $x_{ijk}-bar{x}_{ij.}$ for the kth replication from the ith group at jth time point.
| ^
checkRd: (-1) eu.Rd:24: Lost braces; missing escapes or markup?
24 | This function calcualtes the residual $x_{ijk}-bar{x}_{ij.}$ for the kth replication from the ith group at jth time point.
| ^
checkRd: (-1) eu.Rd:11: Lost braces; missing escapes or markup?
11 | and the last column gives the observation $x_{ijk}$.
| ^
checkRd: (-1) eu.Rd:12: Lost braces; missing escapes or markup?
12 | For given i and j, $x_{ijk}, k=1, ..., n_{ij}$ are assumed to be i.i.d. from the same distribution.}
| ^
checkRd: (-1) eu.Rd:12: Lost braces; missing escapes or markup?
12 | For given i and j, $x_{ijk}, k=1, ..., n_{ij}$ are assumed to be i.i.d. from the same distribution.}
| ^
checkRd: (-1) fun.sigijj12.Rd:5: Lost braces; missing escapes or markup?
5 | \title{Unbiased estimate of $sigma_{ijj1}^2$}
| ^
checkRd: (-1) fun.sigijj12.Rd:20: Lost braces; missing escapes or markup?
20 | This function calculatess an unbiased estimate of $sigma_{ijj1}^2$ using the u-statisitic of vectors
| ^
checkRd: (-1) fun.sigijj12.Rd:21: Lost braces; missing escapes or markup?
21 | $x=(x_1, x_2, ..., x_{ni})$ and $y=(y_1, y_2, ..., y_{ni})$,
| ^
checkRd: (-1) fun.sigijj12.Rd:21: Lost braces; missing escapes or markup?
21 | $x=(x_1, x_2, ..., x_{ni})$ and $y=(y_1, y_2, ..., y_{ni})$,
| ^
checkRd: (-1) fun.sigijj12.Rd:22: Lost braces; missing escapes or markup?
22 | where $X_j$ and $Y_j$ are correlated, but $X_j$ and $Y_{j1}$ are independent if $j ne j1$.
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:23: Lost braces; missing escapes or markup?
23 | Note: $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})(y_{k1}-y_{k2)}) (x_{k3}-x_{k4)}) (y_{k3}-y_{k4)})$ is an
| ^
checkRd: (-1) fun.sigijj12.Rd:24: Lost braces; missing escapes or markup?
24 | unbiased est. of $4*ni*(ni-1)*(ni-2)*(ni-3) [E(X_{ijk}-mu_{ij} u_{ij1k}) ]^2$.
| ^
checkRd: (-1) fun.sigijj12.Rd:24: Lost braces; missing escapes or markup?
24 | unbiased est. of $4*ni*(ni-1)*(ni-2)*(ni-3) [E(X_{ijk}-mu_{ij} u_{ij1k}) ]^2$.
| ^
checkRd: (-1) fun.sigijj12.Rd:24: Lost braces; missing escapes or markup?
24 | unbiased est. of $4*ni*(ni-1)*(ni-2)*(ni-3) [E(X_{ijk}-mu_{ij} u_{ij1k}) ]^2$.
| ^
checkRd: (-1) fun.sigijj12.Rd:16: Lost braces; missing escapes or markup?
16 | The sigmaijj12 variable gives an unbiased estimate of $sigma_{ijj1}^2$.
| ^
checkRd: (-1) fun.sigijj12.Rd:17: Lost braces; missing escapes or markup?
17 | The ssijj1 variable gives an unbiased estimate of $sigma_{ijj} sigma_{ij_1j_1}$.
| ^
checkRd: (-1) fun.sigijj12.Rd:17: Lost braces; missing escapes or markup?
17 | The ssijj1 variable gives an unbiased estimate of $sigma_{ijj} sigma_{ij_1j_1}$.
| ^
checkRd: (-1) sigma4.Rd:17: Lost braces; missing escapes or markup?
17 | the U-statistic $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})^2 (x_{k3}-x_{k4)})^2$.
| ^
checkRd: (-1) sigma4.Rd:17: Lost braces; missing escapes or markup?
17 | the U-statistic $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})^2 (x_{k3}-x_{k4)})^2$.
| ^
checkRd: (-1) sigma4.Rd:17: Lost braces; missing escapes or markup?
17 | the U-statistic $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})^2 (x_{k3}-x_{k4)})^2$.
| ^
checkRd: (-1) sigma4.Rd:17: Lost braces; missing escapes or markup?
17 | the U-statistic $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})^2 (x_{k3}-x_{k4)})^2$.
| ^
checkRd: (-1) sigma4.Rd:17: Lost braces; missing escapes or markup?
17 | the U-statistic $sum_{k1 ne k2 ne k3 ne k4} (x_{k1}-x_{k2)})^2 (x_{k3}-x_{k4)})^2$.
| ^
- checking Rd metadata ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking LazyData ... NOTE
'LazyData' is specified without a 'data' directory
- checking examples ... [4s] OK
- checking PDF version of manual ... [21s] OK
- checking HTML version of manual ... [2s] OK
- DONE
Status: 2 NOTEs