* installing to library ‘/home/hornik/tmp/R.check/r-patched-gcc/Work/build/Packages’ * installing *source* package ‘traineR’ ... ** package ‘traineR’ successfully unpacked and MD5 sums checked ** using staged installation ** R ** byte-compile and prepare package for lazy loading Note: ... may be used in an incorrect context ** help *** installing help indices converting help for package ‘traineR’ finding HTML links ... done ROC.area html ROC.plot html categorical.predictive.power html confusion.matrix html contr.dummy html contr.metric html contr.ordinal html create.model html create.prediction html dummy.data.frame html general.indexes html get.default.parameters html get_test_less_predict html gg_color html importance.plot html max_col html numeric_to_predict html numerical.predictive.power html original_model html plot.prmdt html predict.ada.prmdt html predict.adabag.prmdt html predict.bayes.prmdt html predict.gbm.prmdt html predict.glm.prmdt html predict.glmnet.prmdt html predict.knn.prmdt html predict.lda.prmdt html predict.neuralnet.prmdt html predict.nnet.prmdt html predict.qda.prmdt html predict.randomForest.prmdt html predict.rpart.prmdt html predict.svm.prmdt html predict.xgb.Booster.prmdt html prediction.variable.balance html print.indexes.prmdt html print.prediction.prmdt html print.prmdt html scaler html select_on_class html train.ada html train.adabag html train.bayes html train.gbm html train.glm html train.glmnet html train.knn html train.lda html train.neuralnet html train.nnet html train.qda html train.randomForest html train.rpart html train.svm html train.xgboost html traineR html type_correction html varplot html ** building package indices ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (traineR)