- using R Under development (unstable) (2025-01-18 r87593 ucrt)
- using platform: x86_64-w64-mingw32
- R was compiled by
gcc.exe (GCC) 13.3.0
GNU Fortran (GCC) 13.3.0
- running under: Windows Server 2022 x64 (build 20348)
- using session charset: UTF-8
- checking for file 'clustrd/DESCRIPTION' ... OK
- checking extension type ... Package
- this is package 'clustrd' version '1.4.0'
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking whether package 'clustrd' can be installed ... OK
See the install log for details.
- checking installed package size ... OK
- checking package directory ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [4s] OK
- checking whether the package can be loaded with stated dependencies ... [3s] OK
- checking whether the package can be unloaded cleanly ... [3s] OK
- checking whether the namespace can be loaded with stated dependencies ... [3s] OK
- checking whether the namespace can be unloaded cleanly ... [3s] OK
- checking loading without being on the library search path ... [3s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [17s] OK
- checking Rd files ... [1s] NOTE
checkRd: (-1) global_bootclus.Rd:38: Lost braces; missing escapes or markup?
38 | \emph{Step 1. Resampling:} Draw bootstrap samples S_i and T_i of size \emph{n} from the data and use the original data, X, as evaluation set E_i = X. Apply the clustering method of choice to S_i and T_i and obtain C^{S_i} and C^{T_i}.
| ^
checkRd: (-1) global_bootclus.Rd:38: Lost braces; missing escapes or markup?
38 | \emph{Step 1. Resampling:} Draw bootstrap samples S_i and T_i of size \emph{n} from the data and use the original data, X, as evaluation set E_i = X. Apply the clustering method of choice to S_i and T_i and obtain C^{S_i} and C^{T_i}.
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:40: Lost braces; missing escapes or markup?
40 | \emph{Step 2. Mapping:} Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}, where C^{XS_i} is the partition of the original data, X, predicted from clustering bootstrap sample S_i (same for T_i and C^{XT_i}).
| ^
checkRd: (-1) global_bootclus.Rd:53: Lost braces; missing escapes or markup?
53 | \item{clust1}{Partitions, C^{XS_i} of the original data, X, predicted from clustering bootstrap sample S_i (see Details)}
| ^
checkRd: (-1) global_bootclus.Rd:54: Lost braces; missing escapes or markup?
54 | \item{clust2}{Partitions, C^{XT_i} of the original data, X, predicted from clustering bootstrap sample T_i (see Details)}
| ^
checkRd: (-1) local_bootclus.Rd:37: Lost braces; missing escapes or markup?
37 | \emph{Step 1. Resampling:} Draw bootstrap samples S_i and T_i of size n from the data and use the original data as evaluation set E_i = X. Apply a joint dimension reduction and clustering method to S_i and T_i and obtain C^{S_i} and C^{T_i}.
| ^
checkRd: (-1) local_bootclus.Rd:37: Lost braces; missing escapes or markup?
37 | \emph{Step 1. Resampling:} Draw bootstrap samples S_i and T_i of size n from the data and use the original data as evaluation set E_i = X. Apply a joint dimension reduction and clustering method to S_i and T_i and obtain C^{S_i} and C^{T_i}.
| ^
checkRd: (-1) local_bootclus.Rd:39: Lost braces; missing escapes or markup?
39 | \emph{Step 2. Mapping}: Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}.
| ^
checkRd: (-1) local_bootclus.Rd:39: Lost braces; missing escapes or markup?
39 | \emph{Step 2. Mapping}: Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}.
| ^
checkRd: (-1) local_bootclus.Rd:39: Lost braces; missing escapes or markup?
39 | \emph{Step 2. Mapping}: Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}.
| ^
checkRd: (-1) local_bootclus.Rd:39: Lost braces; missing escapes or markup?
39 | \emph{Step 2. Mapping}: Assign each observation x_i to the closest centers of C^{S_i} and C^{T_i} using Euclidean distance, resulting in partitions C^{XS_i} and C^{XT_i}.
| ^
checkRd: (-1) local_bootclus.Rd:41: Lost braces; missing escapes or markup?
41 | \emph{Step 3. Evaluation}: Obtain the maximum Jaccard agreement between each original cluster C_k and each one of the two bootstrap clusters, C_^k'{XS_i} and C_^k'{XT_i} as measure of agreement and stability, and take the average of each pair.
| ^
checkRd: (-1) local_bootclus.Rd:41: Lost braces; missing escapes or markup?
41 | \emph{Step 3. Evaluation}: Obtain the maximum Jaccard agreement between each original cluster C_k and each one of the two bootstrap clusters, C_^k'{XS_i} and C_^k'{XT_i} as measure of agreement and stability, and take the average of each pair.
| ^
checkRd: (-1) local_bootclus.Rd:54: Lost braces; missing escapes or markup?
54 | \item{clust1}{Partitions, C^{XS_i} of the original data, X, predicted from clustering bootstrap sample S_i (see Details)}
| ^
checkRd: (-1) local_bootclus.Rd:55: Lost braces; missing escapes or markup?
55 | \item{clust2}{Partitions, C^{XT_i} of the original data, X, predicted from clustering bootstrap sample T_i (see Details)}
| ^
- checking Rd metadata ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking contents of 'data' directory ... OK
- checking data for non-ASCII characters ... [0s] OK
- checking data for ASCII and uncompressed saves ... OK
- checking examples ... [27s] OK
- checking PDF version of manual ... [22s] OK
- checking HTML version of manual ... [4s] OK
- DONE
Status: 1 NOTE