- using R Under development (unstable) (2025-01-19 r87600)
- using platform: x86_64-pc-linux-gnu
- R was compiled by
Debian clang version 19.1.6 (1+b1)
Debian flang-new version 19.1.6 (1+b1)
- running under: Debian GNU/Linux trixie/sid
- using session charset: UTF-8
- checking for file ‘SigTree/DESCRIPTION’ ... OK
- checking extension type ... Package
- this is package ‘SigTree’ version ‘1.10.6’
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for executable files ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking for sufficient/correct file permissions ... OK
- checking serialization versions ... OK
- checking whether package ‘SigTree’ can be installed ... OK
See the install log for details.
- used C compiler: ‘Debian clang version 19.1.6 (1+b1)’
- checking package directory ... OK
- checking for future file timestamps ... OK
- checking ‘build’ directory ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [10s/13s] OK
- checking whether the package can be loaded with stated dependencies ... [9s/12s] OK
- checking whether the package can be unloaded cleanly ... [9s/14s] OK
- checking whether the namespace can be loaded with stated dependencies ... [9s/12s] OK
- checking whether the namespace can be unloaded cleanly ... [10s/15s] OK
- checking loading without being on the library search path ... [10s/14s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [46s/62s] OK
- checking Rd files ... [0s/1s] NOTE
checkRd: (-1) export.figtree.Rd:64: Lost braces; missing escapes or markup?
64 | The tip labels of \code{tree} (accessed via \code{tree$tip.label}) must have the same names (and the same length) as the tip labels in \code{unsorted.pvalues}, but may be in a different order. The p-values in column 2 of \code{unsorted.pvalues} obviously must be in the [0, 1] range. \code{p.cutoffs} takes values in the (0, 1) range. The default value for \code{p.cutoffs} is \code{c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99)} if side is \code{1} and \code{c(0.01, 0.05, 0.1)} if side is \code{2}. Thus, the ranges (when side is \code{1}) are: [0, .01], (.01, .05], ..., (.99, 1]. These ranges correspond to the colors specified in \code{pal}. P-values in the [0, .01] range correspond to the left-most color if \code{pal} is a palette (view this via \code{display.brewer.pal(x, pal)} - where \code{x} is the number of colors to be used) or the first value in the vector if \code{pal} is a vector of colors. If \code{pal} is a vector of colors, then the length of \code{pal} should be one greater than the length of \code{p.cutoffs}. In other words, its length must be the same as the number of p-value ranges. In addition, each color in this vector of colors needs to be in hexadecimal format, for example, \code{"#B2182B"}. Formats of colors other than hexadecimal will likely give unwanted results in the edges of the tree produced in \emph{FigTree}, such as all-black edges or the edges being colored in a meaningless way. This is because the color conversion assumes hexadecimal colors. The default value of \code{pal} is \code{"RdBu"} (a divergent palette of reds and blues, with reds corresponding to small p-values) if \code{side} is \code{1} and the reverse of \code{"Reds"} (a sequential palette) if \code{side} is {2}. The sequential palettes in \code{RColorBrewer} go from light to dark, so \code{"Reds"} is reversed so that the dark red corresponds to small p-values. It probably makes more sense to use a divergent palette when using 1-sided p-values and a sequential palette (reversed) when using 2-sided p-values. To create a vector of reversed colors from a palette with \code{x} number of colors and \code{"PaletteName"} as the name of the palette, use \code{rev(brewer.pal(x, "PaletteName"))}. \code{ignore.edge.length} may be useful to get a more uniformly-shaped tree. \code{export.figtree} assumes that each internal node has exactly two descendants. It also assumes that each internal node has a lower number than each of its ancestors (excluding tips).
| ^
checkRd: (-1) plotSigTree.Rd:91: Lost braces; missing escapes or markup?
91 | The tip labels of \code{tree} (accessed via \code{tree$tip.label}) must have the same names (and the same length) as the tip labels in \code{unsorted.pvalues}, but may be in a different order. The p-values in column 2 of \code{unsorted.pvalues} obviously must be in the [0, 1] range. \code{p.cutoffs} takes values in the (0, 1) range. The default value for \code{p.cutoffs} is \code{c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99)} if \code{side} is \code{1} and \code{c(0.01, 0.05, 0.1)} if side is \code{2}. Thus, the ranges (when side is \code{1}) are: [0, .01], (.01, .05], ..., (.99, 1]. These ranges correspond to the colors specified in \code{pal}. P-values in the [0, .01] range correspond to the left-most color if \code{pal} is a palette (view this via \code{display.brewer.pal(x, pal)} - where \code{x} is the number of colors to be used) or the first value in the vector if \code{pal} is a vector of colors. If \code{pal} is a vector of colors, then the length of \code{pal} should be one greater than the length of \code{p.cutoffs}. In other words, its length must be the same as the number of p-value ranges. An example of a color in hexadecimal format is \code{"#B2182B"}. The default value of \code{pal} is \code{"RdBu"} (a divergent palette of reds and blues, with reds corresponding to small p-values) if \code{side} is \code{1} and the reverse of \code{"Reds"} (a sequential palette) if \code{side} is {2}. The sequential palettes in \code{RColorBrewer} go from light to dark, so \code{"Reds"} is reversed so that the dark red corresponds to small p-values. It probably makes more sense to use a divergent palette when using 1-sided p-values and a sequential palette (reversed) when using 2-sided p-values. To create a vector of reversed colors from a palette with \code{x} number of colors and \code{"PaletteName"} as the name of the palette, use \code{rev(brewer.pal(x, "PaletteName"))}. \code{use.edge.length} may be useful to get a more uniformly-shaped tree. \code{plotSigTree} assumes that each internal node has exactly two descendants. It also assumes that each internal node has a lower number than each of its ancestors (excluding tips).
| ^
- checking Rd metadata ... OK
- checking Rd line widths ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking line endings in C/C++/Fortran sources/headers ... OK
- checking pragmas in C/C++ headers and code ... OK
- checking compilation flags used ... OK
- checking compiled code ... OK
- checking sizes of PDF files under ‘inst/doc’ ... OK
- checking installed files from ‘inst/doc’ ... OK
- checking files in ‘vignettes’ ... OK
- checking examples ... [13s/18s] OK
- checking for unstated dependencies in vignettes ... OK
- checking package vignettes ... OK
- checking re-building of vignette outputs ... [16s/23s] OK
- checking PDF version of manual ... [4s/7s] OK
- checking HTML version of manual ... [1s/1s] OK
- checking for non-standard things in the check directory ... NOTE
Found the following files/directories:
‘ExportFigtree1.tre’
- DONE
Status: 2 NOTEs