
Beta Regression:
Shaken, Stirred, Mixed, and Partitioned

Achim Zeileis, Francisco Cribari-Neto, Bettina Grün

Overview

Motivation

Shaken or stirred: Single or double index beta regression for mean
and/or precision in betareg

Mixed: Latent class beta regression via flexmix

Partitioned: Beta regression trees via party

Summary

Motivation

Goal: Model dependent variable y ∈ (0, 1), e.g., rates, proportions,
concentrations etc.

Common approach: Model transformed variable ỹ by a linear model,
e.g., ỹ = logit(y) or ỹ = probit(y) etc.

Disadvantages:

Model for mean of ỹ , not mean of y (Jensen’s inequality).

Data typically heteroskedastic.

Idea: Model y directly using suitable parametric family of distributions
plus link function.

Specifically: Maximum likelihood regression model using alternative
parametrization of beta distribution (Ferrari & Cribari-Neto 2004).

Beta regression

Beta distribution: Continuous distribution for 0 < y < 1, typically
specified by two shape parameters p, q > 0.

Alternatively: Use mean µ = p/(p + q) and precision φ = p + q.

Probability density function:

f (y) =
Γ(p + q)

Γ(p) Γ(q)
yp−1 (1− y)q−1

=
Γ(φ)

Γ(µφ) Γ((1− µ)φ)
yµφ−1 (1− y)(1−µ)φ−1

where Γ(·) is the gamma function.

Properties: Flexible shape. Mean E(y) = µ and

Var(y) =
µ (1− µ)

1 + φ
.

Beta regression

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

φ = 5

y

D
en

si
ty

0.10 0.90

0.25 0.75
0.50

0.0 0.2 0.4 0.6 0.8 1.0
0

5
10

15

φ = 100

y

0.10 0.90

0.25 0.75

0.50

Beta regression

Regression model:

Observations i = 1, . . . , n of dependent variable yi .

Link parameters µi and φi to sets of regressor xi and zi .

Use link functions g1 (logit, probit, . . .) and g2 (log, identity, . . .).

g1(µi) = x>i β,

g2(φi) = z>i γ.

Inference:

Coefficients β and γ are estimated by maximum likelihood.

The usual central limit theorem holds with associated asymptotic
tests (likelihood ratio, Wald, score/LM).

Implementation in R

Model fitting:

Package betareg with main model fitting function betareg().

Interface and fitted models are designed to be similar to glm().

Model specification via formula plus data.

Two part formula, e.g., y ~ x1 + x2 + x3 | z1 + z2.

Log-likelihood is maximized numerically via optim().

Extractors: coef(), vcov(), residuals(), logLik(), . . .

Inference:

Base methods: summary(), AIC(), confint().

Methods from lmtest and car: lrtest(), waldtest(),
coeftest(), linearHypothesis().

Moreover: Multiple testing via multcomp and structural change
tests via strucchange.

Illustration: Reading accuracy

Data: From Smithson & Verkuilen (2006).

44 Australian primary school children.

Dependent variable: Score of test for reading accuracy.

Regressors: Indicator dyslexia (yes/no), nonverbal iq score.

Analysis:

OLS for transformed data leads to non-significant effects.

OLS residuals are heteroskedastic.

Beta regression captures heteroskedasticity and shows significant
effects.

Illustration: Reading accuracy

> data("ReadingSkills", package = "betareg")
> rs_ols <- lm(qlogis(accuracy) ~ dyslexia * iq,
+ data = ReadingSkills)
> coeftest(rs_ols)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.60107 0.22586 7.0888 1.411e-08 ***
dyslexia -1.20563 0.22586 -5.3380 4.011e-06 ***
iq 0.35945 0.22548 1.5941 0.11878
dyslexia:iq -0.42286 0.22548 -1.8754 0.06805 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> bptest(rs_ols)

studentized Breusch-Pagan test

data: rs_ols
BP = 21.692, df = 3, p-value = 7.56e-05

Illustration: Reading accuracy

> rs_beta <- betareg(accuracy ~ dyslexia * iq | dyslexia + iq,
+ data = ReadingSkills)
> coeftest(rs_beta)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.12323 0.14283 7.8638 3.725e-15 ***
dyslexia -0.74165 0.14275 -5.1952 2.045e-07 ***
iq 0.48637 0.13315 3.6528 0.0002594 ***
dyslexia:iq -0.58126 0.13269 -4.3805 1.184e-05 ***
(phi)_(Intercept) 3.30443 0.22274 14.8353 < 2.2e-16 ***
(phi)_dyslexia 1.74656 0.26232 6.6582 2.772e-11 ***
(phi)_iq 1.22907 0.26720 4.5998 4.228e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Illustration: Reading accuracy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

iq

ac
cu

ra
cy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●● control
dyslexic
betareg
lm

● control
dyslexic
betareg
lm

Extensions: Partitions and mixtures

So far: Reuse standard inference methods for fitted model objects.

Now: Reuse fitting functions in more complex models.

Model-based recursive partitioning: Package party.

Idea: Recursively split sample with respect to available variables.

Aim: Maximize partitioned likelihood.

Fit: One model per node of the resulting tree.

Latent class regression, mixture models: Package flexmix.

Idea: Capture unobserved heterogeneity by finite mixtures of
regressions.

Aim: Maximize weighted likelihood with k components.

Fit: Weighted combination of k models.

Beta regression trees

Partitioning variables: dyslexia and further random noise variables.

> set.seed(1071)
> ReadingSkills$x1 <- rnorm(nrow(ReadingSkills))
> ReadingSkills$x2 <- runif(nrow(ReadingSkills))
> ReadingSkills$x3 <- factor(rnorm(nrow(ReadingSkills)) > 0)

Fit beta regression tree: In each node accuracy’s mean and
precision depends on iq, partitioning is done by dyslexia and the
noise variables x1, x2, x3.

> rs_tree <- betatree(accuracy ~ iq | iq,
+ ~ dyslexia + x1 + x2 + x3,
+ data = ReadingSkills, minsplit = 10)
> plot(rs_tree)

Result: Only relevant regressor dyslexia is chosen for splitting.

Beta regression trees

dyslexia
p < 0.001

1

no yes

Node 2 (n = 25)

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

● ● ●●●

−2.1 2.2

1

Node 3 (n = 19)

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

−2.1 2.2

1

Latent class beta regression

Setup:

No dyslexia information available.

Look for k = 3 clusters: Two different relationships of type
accuracy ~ iq, plus component for ideal score of 0.99.

Fit beta mixture regression:
> rs_mix <- betamix(accuracy ~ iq, data = ReadingSkills, k = 3,
+ nstart = 10, extra_components = extraComponent(
+ type = "uniform", coef = 0.99, delta = 0.01))

Result:

Dyslexic children separated fairly well.

Other children are captured by mixture of two components: ideal
reading scores, and strong dependence on iq score.

Latent class beta regression

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

iq

ac
cu

ra
cy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

Latent class beta regression

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

iq

ac
cu

ra
cy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

Latent class beta regression

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

iq

ac
cu

ra
cy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

Latent class beta regression

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

iq

ac
cu

ra
cy

●

●

●

●

●

●

●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

Computational infrastructure

Model-based recursive partitioning:

party provides the recursive partitioning.
betareg provides the models in each node.

Model-fitting function: betareg.fit() (conveniently without
formula processing).
Extractor for empirical estimating functions (aka scores or
case-wise gradient contributions): estfun() method.
Some additional (and somewhat technical) S4 glue. . .

Latent class regression, mixture models:

flexmix provides the E-step for the EM algorithm.
betareg provides the M-step.

Model-fitting function: betareg.fit().
Extractor for case-wise log-likelihood contributions: dbeta().
Some additional (and somewhat more technical) S4 glue. . .

Summary

Beta regression and extensions:

Flexible regression model for proportions, rates, concentrations.

Can capture skewness and heteroskedasticity.

R implementation betareg, similar to glm().

Due to design, standard inference methods can be reused easily.

Fitting functions can be plugged into more complex fitters.

Convenience interfaces available for: Model-based partitioning,
finite mixture models.

References

Francisco Cribari-Neto, Achim Zeileis (2010). “Beta Regression in R.” Journal of
Statistical Software, 34(2), 1–24. http://www.jstatsoft.org/v34/i02/

Bettina Grün and Friedrich Leisch (2008). “FlexMix Version 2: Finite Mixtures with
Concomitant Variables and Varying and Constant Parameters.” Journal of Statistical
Software, 28(4), 1–35. http://www.jstatsoft.org/v28/i04/

Friedrich Leisch (2004). “FlexMix: A General Framework for Finite Mixture Models and
Latent Class Regression in R.” Journal of Statistical Software, 11(8), 1–18.
http://www.jstatsoft.org/v11/i08/

Zeileis A, Hothorn T, Hornik K (2008). “Model-Based Recursive Partitioning.” Journal of
Computational and Graphical Statistics, 17(2), 492–514.
doi:10.1198/106186008X319331

http://www.jstatsoft.org/v34/i02/
http://www.jstatsoft.org/v28/i04/
http://www.jstatsoft.org/v11/i08/
http://dx.doi.org/10.1198/106186008X319331

	*-0.5cmBeta Regression:Shaken, Stirred, Mixed, and Partitioned
	Overview
	Motivation
	Beta regression
	Implementation in R
	Illustration: Reading accuracy
	Extensions
	Summary

