# Iqmm: Estimating Quantile Regression Models for Independent and Hierarchical Data with R

#### Marco Geraci

MRC Centre of Epidemiology for Child Health Institute of Child Health, University College London

m.geraci@ich.ucl.ac.uk

useR! 2011 August 16-18, 2011 University of Warwick, Coventry, UK





## Quantile regression

Conditional quantile regression (QR) pertains to the estimation of unknown quantiles of an outcome as a function of a set of covariates and a vector of fixed regression coefficients.

For example, consider a sample of 654 observations of FEV1 in individuals aged 3 to 19 years who were seen in the Childhood Respiratory Disease (CRD) Study in East Boston, Massachusetts <sup>1</sup>. We might be interested in estimating **median** FEV1 or any other **quantile** as a **function** of age, sex, smoking, etc.

<sup>&</sup>lt;sup>1</sup>Data available at http://www.statsci.org/datasets.html

## Quantile regression

Conditional quantile regression (QR) pertains to the estimation of unknown quantiles of an outcome as a function of a set of covariates and a vector of fixed regression coefficients.

For example, consider a sample of 654 observations of FEV1 in individuals aged 3 to 19 years who were seen in the Childhood Respiratory Disease (CRD) Study in East Boston, Massachusetts <sup>1</sup>. We might be interested in estimating **median** FEV1 or any other **quantile** as a **function** of age, sex, smoking, etc.

<sup>&</sup>lt;sup>1</sup>Data available at http://www.statsci.org/datasets.html



Regression quantiles (black) and mean fit (red) of FEV1 vs Age.

Let's index the quantiles Q of the continuous response  $y_i$  with p,  $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$ . The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left( y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response  $y_i$  with p,  $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$ . The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left( y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response  $y_i$  with p,  $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$ . The conditional (linear) quantile function

$$Q_{Y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left( y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response  $y_i$  with p,  $0 , that is <math>\Pr(y_i \leq Q_{y_i}(p)) = p$ . The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p),$$
  $i = 1,...,N$ 

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left( y_{i} - x_{i}' \beta(p) \right),$$

Mean regression problem (least squares)

$$\min_{\beta} \sum (y - x'\beta)^{2}$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(y - x'\beta)^{2}\right\}$$

Normal distribution

Quantile regression problem (least absolute deviations)

$$\min_{\beta} \sum g_{\rho}(y - x'\beta)$$

$$\frac{p(1-p)}{\sigma} \exp\left\{-\frac{1}{\sigma}g_{\rho}(y - x'\beta)\right\}$$

Asymmetric Laplace distribution







## Quantile regression and random effects

If 
$$y \sim AL(\mu, \sigma, p)$$
 then  $Q_y(p) = \mu$ .

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u) = x'\beta(p) + u.$$

Likelihood-based estimation (MCEM - R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$  (p is fixed a priori)
- u ⊥ ε

# Quantile regression and random effects

If 
$$y \sim AL(\mu, \sigma, p)$$
 then  $Q_y(p) = \mu$ .

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u)=x'\beta(p)+u.$$

Likelihood-based estimation (MCEM – R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$  (p is fixed a priori)
- u ⊥ ε

# Quantile regression and random effects

If 
$$y \sim AL(\mu, \sigma, p)$$
 then  $Q_y(p) = \mu$ .

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u)=x'\beta(p)+u.$$

Likelihood-based estimation (MCEM – R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$  (p is fixed a priori)
- $u \perp \epsilon$

## Linear Quantile Mixed Models

The package lqmm (S3-style) is a suite of commands for fitting linear quantile mixed models of the type

- $y = X\beta + Zu + \epsilon$
- continuous y
- two-level nested model (e.g., repeated measurements on same subject, households within same postcode, etc)
- $\epsilon \sim AL(0, \sigma I, p)$
- **multiple**, symmetric random effects with covariance matrix  $\Psi$   $(q \times q)$
- $u \perp \epsilon$

Note all unknown parameters are p-dependent

## Linear Quantile Mixed Models

The package lqmm (S3-style) is a suite of commands for fitting linear quantile mixed models of the type

- $y = X\beta + Zu + \epsilon$
- continuous y
- two-level nested model (e.g., repeated measurements on same subject, households within same postcode, etc)
- $\epsilon \sim AL(0, \sigma I, p)$
- **multiple**, symmetric random effects with covariance matrix  $\Psi$   $(q \times q)$
- $u \perp \epsilon$

Note all unknown parameters are p-dependent

## LQMM estimation

Let the pair (ij),  $j=1,\ldots,n_i$ ,  $i=1,\ldots,M$ , index the j-th observation for the i-th cluster/group/subject. The joint density of (y,u) based on M clusters for the linear quantile mixed model is given by

$$f(y,u|\beta,\sigma,\Psi) = f(y|\beta,\sigma,u)f(u|\Psi) = \prod_{i=1}^{M} f(y_i|\beta,\sigma,u_i)f(u_i|\Psi)$$

Numerical integration of likelihood (log-concave by Prékopa, 1973)

$$L_{i}(\beta, \sigma, \Psi|y) = \sigma_{n_{i}}(p) \int_{R^{q}} \exp\left\{-\frac{1}{\sigma}g_{p}\left(y_{i} - x_{i}'\beta\left(p\right) - z_{i}'u_{i}\right)\right\} f(u_{i}|\Psi) du_{i}$$

where 
$$\sigma_{n_i}(p) = [p(1-p)/\sigma]^{n_i}$$
 and  $g_p(e_i) = \sum_{i=1}^{n_i} g_p(e_i)$ 

## LQMM estimation

Let the pair (ij),  $j=1,\ldots,n_i$ ,  $i=1,\ldots,M$ , index the j-th observation for the i-th cluster/group/subject. The joint density of (y,u) based on M clusters for the linear quantile mixed model is given by

$$f(y, u|\beta, \sigma, \Psi) = f(y|\beta, \sigma, u)f(u|\Psi) = \prod_{i=1}^{M} f(y_i|\beta, \sigma, u_i)f(u_i|\Psi)$$

Numerical integration of likelihood (log-concave by Prékopa, 1973)

where  $\sigma_{n_i}(p) = [p(1-p)/\sigma]^{n_i}$  and  $g_p(e_i) = \sum_{i=1}^{n_i} g_p(e_i)$ .

$$L_{i}(\beta, \sigma, \Psi|y) = \sigma_{n_{i}}(p) \int_{R^{q}} \exp \left\{-\frac{1}{\sigma} g_{p} \left(y_{i} - x_{i}'\beta\left(p\right) - z_{i}'u_{i}\right)\right\} f(u_{i}|\Psi) du_{i},$$

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$  quadrature
- robust random effects  $u \sim \mathrm{Laplace}\,(0,\Psi)$  under the assumption  $\Psi = \psi I \to \mathsf{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss ext{-}Hermite}$  quadrature
- robust random effects  $u \sim \mathrm{Laplace}\,(0,\Psi)$  under the assumption  $\Psi = \psi I \to \mathsf{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$  quadrature
- robust random effects  $u \sim \mathrm{Laplace}\,(0,\Psi)$  under the assumption  $\Psi = \psi I \longrightarrow \mathsf{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects  $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$  quadrature
- robust random effects  $u \sim \text{Laplace}(0, \Psi)$  under the assumption  $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$  quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

## lqmm package



## lqmm package



- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

#### Aim



Density of the labor pain score plotted for the entire sample (solid line), for the pain medication group only (dashed line) and for the placebo group only (dot-dashed line). Source: Geraci and Bottai (2007).



Boxplot of labor pain score. The lines represent the estimate of the quartiles for the placebo group (solid) and the pain medication group (dashed). Source: Geraci and Bottai (2007).

```
# LOMM FIT
> tmp <- labor$y/100; tmp[tmp == 0] <- 0.025; tmp[tmp == 1] <- 0.975
> laborSpain logit <- log(tmp/(1-tmp)) # outcome
> system.time(
+ fit.int <- lqmm(pain logit ~ time center*treatment, random = ~ 1, group =
labor$id, data = labor, iota = c(0.1, 0.5, 0.9)
+ )
  user system elapsed
  0.22 0.00 0.22
# PRINT LOMM OBJECTS
> fit int
Call: lgmm(formula = pain logit ~ time center * treatment, random = ~1,
   group = labor$id, data = labor, iota = c(0.1, 0.5, 0.9))
Fixed effects:
                     iota = 0.1 iota = 0.5 iota = 0.9
Intercept
                    -0.9828
                               0.3702 1.8547
                     0.7739 0.7569 0.8009
time center
                    -2.6808 -2.5201 -1.8623
treatment
time center:treatment -0.7740 -0.7523 -0.5908
Number of observations: 357
Number of groups: 83
```

```
# EXTRACTING STATISTICS
> logLik(fit.int)
'log Lik.' -640.5730, -628.0026, -695.6520 (df=6)
> coef(fit.int)
                           0.1 0.5 0.9
Intercept
                   -0.9827571 0.3702043 1.8546808
                    0.7738773 0.7569301 0.8009082
time center
treatment
                   -2.6808118 -2.5200997 -1.8623206
time center:treatment -0.7739989 -0.7522610 -0.5907584
> cov.lgmm(fit.int)
$`0.1`
Intercept
2.093377
$`0.5`
Intercept
2.630906
$`0.9`
Intercept
 2.78936
```

```
# RANDOM SLOPE
> system.time(
+ fit.slope <- lgmm(pain logit ~ time center*treatment, random = ~ time center.
group = labor$id, covariance = "pdSymm", data = labor, iota = c(0.1,0.5,0.9))
+ )
  user system elapsed
   8.24 0.00 8.24
> cov.lgmm(fit.slope)
$`0.1`
           Intercept time center
Intercept 1.4655346 0.31884671
time center 0.3188467 0.07266096
$`0.5`
            Intercept time center
Intercept 2.52996615 0.091073866
time center 0.09107387 0.004447338
$`0.9`
            Intercept time center
            1.7134076 -0.17001109
Intercept
time center -0.1700111 0.02155449
> AIC(fit.int)
[1] 1293.146 1268.005 1403.304
> AIC(fit.slope)
[11 1375.718 1268.372 1401.859
```

```
# SUMMARY LOMM OBJECT
> fit.int <- lqmm(pain logit ~ time center*treatment, random = ~ 1, group =
laborSid, data = labor, iota = 0.5, type = "robust")
> summary(fit.int)
Call: lgmm(formula = pain logit ~ time center * treatment, random = ~1,
   group = labor$id, data = labor, iota = 0.5, type = "robust")
Ouantile 0.5
                       Value Std. Error lower bound upper bound Pr(>|t|)
                    0.011624 0.161867 -0.313661 0.3369
Intercept
time center
                    treatment -2.989943 0.134250 -3.259729 -2.7202 < 2.2e-16 *** time center:treatment -0.627419 0.092040 -0.812381 -0.4425 1.275e-08 ***
                     scale
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null model (likelihood ratio):
[11\ 183\ (p = 0)
AIC:
[11\ 1304\ (df = 6)]
Warning message:
In errorHandling(OPTIMIZATIONSlow loop, "low", controlSlow loop max iter, :
 Lower loop did not converge in: lgmm. Try increasing max number of iterations
```

(500) or tolerance (0.001)

#### Concluding remarks

#### Performance assessment

- pilot simulation: confirmed previous bias and efficiency results but much faster than MCFM
- main simulation: extensive range of models and scenarios
- algorithm speed (preview):
  - Iqmm method "gs" ranged from 0.03 (random intercept models) to 14 seconds (random intercept + slope) on average, for sample size between 250 ( $M=50\times n=5$ ) and 1000 ( $M=100\times n=10$ )
  - linear programming (quantreg::rq) vs gradient search (lqmm::lqm)



### Concluding remarks

#### Work in progress

- estimation algorithms: "A Gradient Search Algorithm for Estimation of Laplace Regression" (with Prof. Matteo Bottai and Dr Nicola Orsini – Karolinska Institutet) and "Geometric Programming for Quantile Mixed Models"
- methodological: "Linear Quantile Mixed Models" (with M. Bottai) (available upon request m.geraci@ich.ucl.ac.uk)
- software: Iqmm for Stata (with M. Bottai and N. Orsini)

### Concluding remarks

To-do list (as usual, very long)

- submit to CRAN!
- plot functions
- adaptive quadrature
- integration on sparse grids (Smolyak, Soviet Mathematics Doklady, 1963, Heiss and Winschel, J Econometrics, 2008)
- missing data
- smoothing
- interface with other packages
- S4-style
- . . .

# Acknowledgements

| Function                    | Package | Version | Author(s)                                   |
|-----------------------------|---------|---------|---------------------------------------------|
| is./make.positive.definite  | corpcor | 1.5.7   | J. Schaefer, R. Opgen-Rhein,<br>K. Strimmer |
| permutations                | gtools  | 2.6.2   | G.R. Warnes                                 |
| gauss.quad, gauss.quad.prob | statmod | 1.4.8   | G. Smyth                                    |

#### References

- Clarke F (1990). Optimization and nonsmooth analysis. SIAM.
- Geraci M, Bottai M (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution, *Biostatistics*, 8, 140-54.
- Heiss F, Winschel, V (2008). Likelihood approximation by numerical integration on sparse grids, *J Econometrics*, 144, 62-80.
- Higham N (2002). Computing the nearest correlation matrix a problem from finance, *IMA Journal of Numerical Analysis*, 22, 329-343.
- Koenker R, Bassett G (1978). Regression quantiles, Econometrica, 46. 33-50.
- Machado JAF, Santos Silva JMC (2004). Quantiles for counts, JASA, 100, 1226-1237.
- Smolyak S. (1963). Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Mathematics Doklady, 4, 240-243.

## MRC Centre of Epidemiology for Child Health Institute of Child Health, University College London http://www.ucl.ac.uk/ich/homepage

m.geraci@ich.ucl.ac.uk