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Quantile regression

Conditional quantile regression (QR) pertains to the estimation of
unknown quantiles of an outcome as a function of a set of
covariates and a vector of fixed regression coefficients.

For example, consider a sample of 654 observations of FEV1 in
individuals aged 3 to 19 years who were seen in the Childhood
Respiratory Disease (CRD) Study in East Boston, Massachusetts 1.
We might be interested in estimating median FEV1 or any other
quantile as a function of age, sex, smoking, etc.

1Data available at http://www.statsci.org/datasets.html
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Quantile regression (contd)
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Quantile regression (contd)

Let’s index the quantiles Q of the continuous response yi with p,
0 < p < 1, that is Pr(yi 6 Qyi (p)) = p.The conditional (linear)
quantile function

Qyi (p|xi ) = x ′iβ (p) , i = 1, . . . ,N

can be estimated by solving (Koenker and Bassett, Econometrica,
1978)

min
β

∑
i

gp
(
yi − x ′iβ(p)

)
,

where gp(z) = z (p − I (z < 0)) and β(p) is the regression
coefficient vector indexed by p.
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Likelihood-based quantile regression: The asymmetric
Laplace

Mean regression problem
(least squares)
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Quantile regression and random effects

If y ∼ AL(µ, σ, p) then Qy (p) = µ.

The aim is to develop a QR model for hierarchical data. Inclusion
of random intercepts in the conditional quantile function is
straightforward (Geraci and Bottai, Biostatistics, 2007)

Qy (p|x , u) = x ′β (p) + u.

Likelihood-based estimation (MCEM – R and WinBUGS) assuming

y = Xβ + Zu + ε

u ∼ N
(
0, σ2

u

)
ε ∼ AL (0, σI , p) (p is fixed a priori)

u ⊥ ε
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Linear Quantile Mixed Models

The package lqmm (S3-style) is a suite of commands for fitting linear
quantile mixed models of the type

y = Xβ + Zu + ε

continuous y

two-level nested model (e.g., repeated measurements on same
subject, households within same postcode, etc)

ε ∼ AL (0, σI , p)

multiple, symmetric random effects with covariance matrix Ψ
(q × q)

u ⊥ ε

Note all unknown parameters are p-dependent
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LQMM estimation

Let the pair (ij), j = 1, . . . , ni , i = 1, . . . ,M, index the j-th
observation for the i-th cluster/group/subject. The joint density of
(y , u) based on M clusters for the linear quantile mixed model is
given by

f (y , u|β, σ,Ψ) = f (y |β, σ, u)f (u|Ψ) =
M∏
i=1

f (yi |β, σ, ui )f (ui |Ψ)

Numerical integration of likelihood (log-concave by Prékopa, 1973)

Li (β, σ,Ψ|y) = σni (p)

∫
Rq

exp

{
− 1

σ
gp
(
yi − x ′iβ (p)− z ′i ui

)}
f (ui |Ψ)dui ,

where σni (p) = [p(1− p)/σ]ni and gp (ei ) =
∑ni

j=1 gp (ej).
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Numerical integration with

normal random effects u ∼ N (0,Ψ) → Gauss-Hermite
quadrature

robust random effects u ∼ Laplace (0,Ψ) under the
assumption Ψ = ψI → Gauss-Laguerre quadrature

Estimation of fixed effects β and covariance matrix Ψ

gradient search for Laplace likelihood (subgradient
optimization)

derivative-free optimization (e.g., Nelder-Mead)
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lqmm package

lqmm(formula, random, group, covariance = "pdIdent", data, subset, weights =
NULL, iota = 0.5, nK = 11, type = "normal", control = list(), fit = TRUE)

lqmmControl
Object of class

lqmm (fit =

TRUE)

summary.lqmm, boot.lqmm, AIC,
logLik, coefficients/coef,
“print” methods

under development: raneff,
predict, residuals

lqmm.fit.gs(theta_0, x, y, z, weights,

cov_name, V, W, sigma_0, iota, group, control)

1st step: GRADIENT SEARCH FOR LAPLACE

LIKELIHOOD

.C("gradientSd_h", ...)

depends on C functions not callable by

user

ll_h_d # computes likelihood and
directional derivatives
psi_mat # computes covariance matrix
lin_pred_ll # computes linear predictor

lqmm.fit.df

same arguments

as lqmm.fit.gs

DERIVATIVE-FREE

OPTIMIZATION

optim, optimize

2nd step:

OPTIMIZE SCALE

PARAMETER

.C("ll_h_R", ...)

Object of class

list (fit =

FALSE)

cov.lqmm # depends on
“covHandling” which handles
matrices named pdIdent, pdDiag,
pdCompSymm, pdSymm
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lqmm package

lqm(formula, data, subset, na.action, weights = NULL, iota = 0.5,
contrasts = NULL, control = list(), fit = TRUE)

lqmControl

Object of

class list

Object of

class lqm

(fit =

TRUE)

summary.lqm, boot.lqm, AIC,
logLik, coefficients/coef,
predict, residuals, “print”
methods

Object of

class list

(fit =

FALSE)

lqm.fit.gs(theta, x, y, weights, iota, control)

GRADIENT SEARCH FOR LAPLACE LIKELIHOOD

.C("gradientSd_s", ...)

depends on C functions not callable by

user

errorHandling
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Labor pain data

repeated measurements of self-reported amount of pain (response)
on 83 women in labor

43 randomly assigned to a pain medication group and 40 to a
placebo group

response measured every 30 min on a 100-mm line (0 no pain - 100
extreme pain)

Aim

to assess the effectiveness of the medication
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# LQMM FIT

> tmp <- labor$y/100; tmp[tmp == 0] <- 0.025; tmp[tmp == 1] <- 0.975
> labor$pain_logit <- log(tmp/(1-tmp)) # outcome
> system.time(
+ fit.int <- lqmm(pain_logit ~ time_center*treatment, random = ~ 1, group =
labor$id, data = labor, iota = c(0.1,0.5,0.9))
+ )

user system elapsed
0.22 0.00 0.22

# PRINT LQMM OBJECTS

> fit.int
Call: lqmm(formula = pain_logit ~ time_center * treatment, random = ~1,

group = labor$id, data = labor, iota = c(0.1, 0.5, 0.9))

Fixed effects:
iota = 0.1 iota = 0.5 iota = 0.9

Intercept -0.9828 0.3702 1.8547
time_center 0.7739 0.7569 0.8009
treatment -2.6808 -2.5201 -1.8623
time_center:treatment -0.7740 -0.7523 -0.5908

Number of observations: 357
Number of groups: 83
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# EXTRACTING STATISTICS

> logLik(fit.int)
'log Lik.' -640.5730, -628.0026, -695.6520 (df=6)

> coef(fit.int)
0.1 0.5 0.9

Intercept -0.9827571 0.3702043 1.8546808
time_center 0.7738773 0.7569301 0.8009082
treatment -2.6808118 -2.5200997 -1.8623206
time_center:treatment -0.7739989 -0.7522610 -0.5907584

> cov.lqmm(fit.int)
$`0.1`
Intercept
2.093377

$`0.5`
Intercept
2.630906

$`0.9`
Intercept

2.78936

14 / 21



# RANDOM SLOPE

> system.time(
+ fit.slope <- lqmm(pain_logit ~ time_center*treatment, random = ~ time_center,
group = labor$id, covariance = "pdSymm", data = labor, iota = c(0.1,0.5,0.9))
+ )

user system elapsed
8.24 0.00 8.24

> cov.lqmm(fit.slope)
$`0.1`

Intercept time_center
Intercept 1.4655346 0.31884671
time_center 0.3188467 0.07266096

$`0.5`
Intercept time_center

Intercept 2.52996615 0.091073866
time_center 0.09107387 0.004447338

$`0.9`
Intercept time_center

Intercept 1.7134076 -0.17001109
time_center -0.1700111 0.02155449
> AIC(fit.int)
[1] 1293.146 1268.005 1403.304
> AIC(fit.slope)
[1] 1375.718 1268.372 1401.859
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# SUMMARY LQMM OBJECT

> fit.int <- lqmm(pain_logit ~ time_center*treatment, random = ~ 1, group =
labor$id, data = labor, iota = 0.5, type = "robust")
> summary(fit.int)
Call: lqmm(formula = pain_logit ~ time_center * treatment, random = ~1,

group = labor$id, data = labor, iota = 0.5, type = "robust")

Quantile 0.5
Value Std. Error lower bound upper bound Pr(>|t|)

Intercept 0.011624 0.161867 -0.313661 0.3369 0.943
time_center 0.708198 0.074178 0.559132 0.8573 9.158e-13 ***
treatment -2.989943 0.134250 -3.259729 -2.7202 < 2.2e-16 ***
time_center:treatment -0.627419 0.092040 -0.812381 -0.4425 1.275e-08 ***
scale 0.428443 0.031258 0.365628 0.4913 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Null model (likelihood ratio):
[1] 183 (p = 0)
AIC:
[1] 1304 (df = 6)
Warning message:
In errorHandling(OPTIMIZATION$low_loop, "low", control$low_loop_max_iter, :

Lower loop did not converge in: lqmm. Try increasing max number of iterations
(500) or tolerance (0.001)
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Concluding remarks

Performance assessment

pilot simulation: confirmed previous bias and efficiency results
but much faster than MCEM

main simulation: extensive range of models and scenarios

algorithm speed (preview):

lqmm method “gs” ranged from 0.03 (random intercept
models) to 14 seconds (random intercept + slope) on average,
for sample size between 250 (M = 50× n = 5) and 1000
(M = 100× n = 10)
linear programming (quantreg::rq) vs gradient search
(lqmm::lqm)
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● ● ● ●

●

Time to convergence (location−shift model)

sample size (log−scale)

tim
e 

(s
ec
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ds

)

10 100 1000 10000 1e+05 1e+06

0
2

4
42

0

●

Intel Core i7 @ 2.93Ghz, RAM 16 GB, Windows 64−bit

Tolerance 1e−04

● Barrodale and Roberts (br)
Frisch−Newton (fn)
gradient search (gs)
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Concluding remarks

Work in progress

estimation algorithms: “A Gradient Search Algorithm for
Estimation of Laplace Regression” (with Prof. Matteo Bottai
and Dr Nicola Orsini – Karolinska Institutet) and “Geometric
Programming for Quantile Mixed Models”

methodological: “Linear Quantile Mixed Models” (with M.
Bottai) (available upon request m.geraci@ich.ucl.ac.uk)

software: lqmm for Stata (with M. Bottai and N. Orsini)
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Concluding remarks

To-do list (as usual, very long)

submit to CRAN!

plot functions

adaptive quadrature

integration on sparse grids (Smolyak, Soviet Mathematics
Doklady, 1963, Heiss and Winschel, J Econometrics, 2008)

missing data

smoothing

interface with other packages

S4-style

. . .
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