Iqmm: Estimating Quantile Regression Models for Independent and Hierarchical Data with R

Marco Geraci

MRC Centre of Epidemiology for Child Health Institute of Child Health, University College London

m.geraci@ich.ucl.ac.uk

useR! 2011 August 16-18, 2011 University of Warwick, Coventry, UK

Quantile regression

Conditional quantile regression (QR) pertains to the estimation of unknown quantiles of an outcome as a function of a set of covariates and a vector of fixed regression coefficients.

For example, consider a sample of 654 observations of FEV1 in individuals aged 3 to 19 years who were seen in the Childhood Respiratory Disease (CRD) Study in East Boston, Massachusetts ¹. We might be interested in estimating **median** FEV1 or any other **quantile** as a **function** of age, sex, smoking, etc.

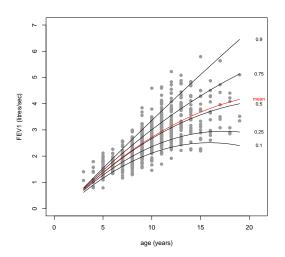
¹Data available at http://www.statsci.org/datasets.html

Quantile regression

Conditional quantile regression (QR) pertains to the estimation of unknown quantiles of an outcome as a function of a set of covariates and a vector of fixed regression coefficients.

For example, consider a sample of 654 observations of FEV1 in individuals aged 3 to 19 years who were seen in the Childhood Respiratory Disease (CRD) Study in East Boston, Massachusetts ¹. We might be interested in estimating **median** FEV1 or any other **quantile** as a **function** of age, sex, smoking, etc.

¹Data available at http://www.statsci.org/datasets.html



Regression quantiles (black) and mean fit (red) of FEV1 vs Age.

Let's index the quantiles Q of the continuous response y_i with p, $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$. The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left(y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response y_i with p, $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$. The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left(y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response y_i with p, $0 , that is <math>\Pr(y_i \leqslant Q_{y_i}(p)) = p$. The conditional (linear) quantile function

$$Q_{Y_i}(p|x_i) = x_i'\beta(p), \qquad i = 1, \dots, N$$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left(y_{i} - x_{i}' \beta(p) \right),$$

Let's index the quantiles Q of the continuous response y_i with p, $0 , that is <math>\Pr(y_i \leq Q_{y_i}(p)) = p$. The conditional (linear) quantile function

$$Q_{y_i}(p|x_i) = x_i'\beta(p),$$
 $i = 1,...,N$

can be estimated by solving (Koenker and Bassett, *Econometrica*, 1978)

$$\min_{\beta} \sum_{i} g_{p} \left(y_{i} - x_{i}' \beta(p) \right),$$

Mean regression problem (least squares)

$$\min_{\beta} \sum (y - x'\beta)^{2}$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(y - x'\beta)^{2}\right\}$$

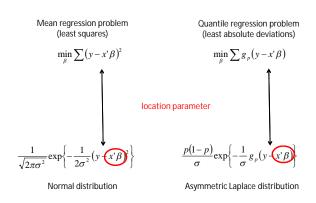
Normal distribution

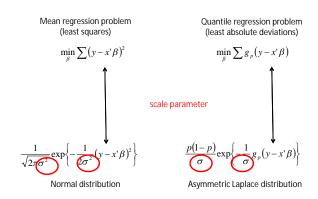
Quantile regression problem (least absolute deviations)

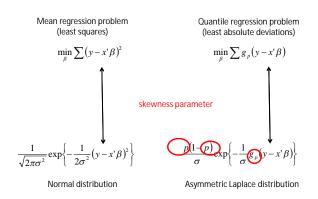
$$\min_{\beta} \sum g_{\rho}(y - x'\beta)$$

$$\frac{p(1-p)}{\sigma} \exp\left\{-\frac{1}{\sigma}g_{\rho}(y - x'\beta)\right\}$$

Asymmetric Laplace distribution







Quantile regression and random effects

If
$$y \sim AL(\mu, \sigma, p)$$
 then $Q_y(p) = \mu$.

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u) = x'\beta(p) + u.$$

Likelihood-based estimation (MCEM - R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$ (p is fixed a priori)
- u ⊥ ε

Quantile regression and random effects

If
$$y \sim AL(\mu, \sigma, p)$$
 then $Q_y(p) = \mu$.

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u)=x'\beta(p)+u.$$

Likelihood-based estimation (MCEM – R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$ (p is fixed a priori)
- u ⊥ ε

Quantile regression and random effects

If
$$y \sim AL(\mu, \sigma, p)$$
 then $Q_y(p) = \mu$.

The aim is to develop a QR model for hierarchical data. Inclusion of random intercepts in the conditional quantile function is straightforward (Geraci and Bottai, *Biostatistics*, 2007)

$$Q_{y}(p|x,u)=x'\beta(p)+u.$$

Likelihood-based estimation (MCEM – R and WinBUGS) assuming

- $y = X\beta + Zu + \epsilon$
- $u \sim N(0, \sigma_u^2)$
- $\epsilon \sim AL(0, \sigma I, p)$ (p is fixed a priori)
- $u \perp \epsilon$

Linear Quantile Mixed Models

The package lqmm (S3-style) is a suite of commands for fitting linear quantile mixed models of the type

- $y = X\beta + Zu + \epsilon$
- continuous y
- two-level nested model (e.g., repeated measurements on same subject, households within same postcode, etc)
- $\epsilon \sim AL(0, \sigma I, p)$
- **multiple**, symmetric random effects with covariance matrix Ψ $(q \times q)$
- $u \perp \epsilon$

Note all unknown parameters are p-dependent

Linear Quantile Mixed Models

The package lqmm (S3-style) is a suite of commands for fitting linear quantile mixed models of the type

- $y = X\beta + Zu + \epsilon$
- continuous y
- two-level nested model (e.g., repeated measurements on same subject, households within same postcode, etc)
- $\epsilon \sim AL(0, \sigma I, p)$
- **multiple**, symmetric random effects with covariance matrix Ψ $(q \times q)$
- $u \perp \epsilon$

Note all unknown parameters are p-dependent

LQMM estimation

Let the pair (ij), $j=1,\ldots,n_i$, $i=1,\ldots,M$, index the j-th observation for the i-th cluster/group/subject. The joint density of (y,u) based on M clusters for the linear quantile mixed model is given by

$$f(y,u|\beta,\sigma,\Psi) = f(y|\beta,\sigma,u)f(u|\Psi) = \prod_{i=1}^{M} f(y_i|\beta,\sigma,u_i)f(u_i|\Psi)$$

Numerical integration of likelihood (log-concave by Prékopa, 1973)

$$L_{i}(\beta, \sigma, \Psi|y) = \sigma_{n_{i}}(p) \int_{R^{q}} \exp\left\{-\frac{1}{\sigma}g_{p}\left(y_{i} - x_{i}'\beta\left(p\right) - z_{i}'u_{i}\right)\right\} f(u_{i}|\Psi) du_{i}$$

where
$$\sigma_{n_i}(p) = [p(1-p)/\sigma]^{n_i}$$
 and $g_p(e_i) = \sum_{i=1}^{n_i} g_p(e_i)$

LQMM estimation

Let the pair (ij), $j=1,\ldots,n_i$, $i=1,\ldots,M$, index the j-th observation for the i-th cluster/group/subject. The joint density of (y,u) based on M clusters for the linear quantile mixed model is given by

$$f(y, u|\beta, \sigma, \Psi) = f(y|\beta, \sigma, u)f(u|\Psi) = \prod_{i=1}^{M} f(y_i|\beta, \sigma, u_i)f(u_i|\Psi)$$

Numerical integration of likelihood (log-concave by Prékopa, 1973)

where $\sigma_{n_i}(p) = [p(1-p)/\sigma]^{n_i}$ and $g_p(e_i) = \sum_{i=1}^{n_i} g_p(e_i)$.

$$L_{i}(\beta, \sigma, \Psi|y) = \sigma_{n_{i}}(p) \int_{R^{q}} \exp \left\{-\frac{1}{\sigma} g_{p} \left(y_{i} - x_{i}'\beta\left(p\right) - z_{i}'u_{i}\right)\right\} f(u_{i}|\Psi) du_{i},$$

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$ quadrature
- robust random effects $u \sim \mathrm{Laplace}\,(0,\Psi)$ under the assumption $\Psi = \psi I \to \mathsf{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss ext{-}Hermite}$ quadrature
- robust random effects $u \sim \mathrm{Laplace}\,(0,\Psi)$ under the assumption $\Psi = \psi I \to \mathsf{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$ quadrature
- robust random effects $u \sim \mathrm{Laplace}\,(0,\Psi)$ under the assumption $\Psi = \psi I \longrightarrow \mathsf{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

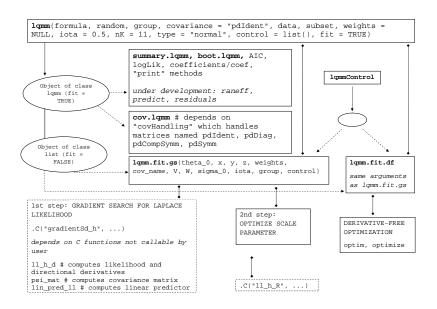
- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

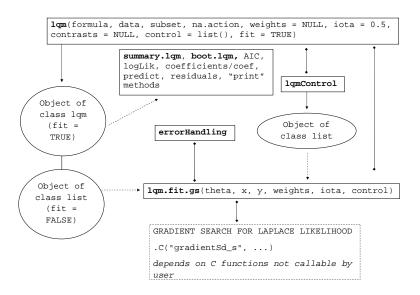
- normal random effects $u \sim \mathrm{N}\left(0,\Psi\right) \ o \mathsf{Gauss} ext{-Hermite}$ quadrature
- robust random effects $u \sim \text{Laplace}(0, \Psi)$ under the assumption $\Psi = \psi I \rightarrow \text{Gauss-Laguerre}$ quadrature

- gradient search for Laplace likelihood (subgradient optimization)
- derivative-free optimization (e.g., Nelder-Mead)

lqmm package



lqmm package



- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

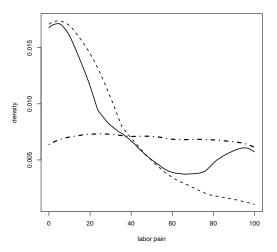
Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

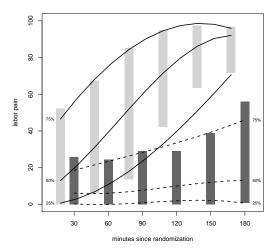
Aim

- repeated measurements of self-reported amount of pain (response) on 83 women in labor
- 43 randomly assigned to a pain medication group and 40 to a placebo group
- response measured every 30 min on a 100-mm line (0 no pain 100 extreme pain)

Aim



Density of the labor pain score plotted for the entire sample (solid line), for the pain medication group only (dashed line) and for the placebo group only (dot-dashed line). Source: Geraci and Bottai (2007).



Boxplot of labor pain score. The lines represent the estimate of the quartiles for the placebo group (solid) and the pain medication group (dashed). Source: Geraci and Bottai (2007).

```
# LOMM FIT
> tmp <- labor$y/100; tmp[tmp == 0] <- 0.025; tmp[tmp == 1] <- 0.975
> laborSpain logit <- log(tmp/(1-tmp)) # outcome
> system.time(
+ fit.int <- lqmm(pain logit ~ time center*treatment, random = ~ 1, group =
labor$id, data = labor, iota = c(0.1, 0.5, 0.9)
+ )
  user system elapsed
  0.22 0.00 0.22
# PRINT LOMM OBJECTS
> fit int
Call: lgmm(formula = pain logit ~ time center * treatment, random = ~1,
   group = labor$id, data = labor, iota = c(0.1, 0.5, 0.9))
Fixed effects:
                     iota = 0.1 iota = 0.5 iota = 0.9
Intercept
                    -0.9828
                               0.3702 1.8547
                     0.7739 0.7569 0.8009
time center
                    -2.6808 -2.5201 -1.8623
treatment
time center:treatment -0.7740 -0.7523 -0.5908
Number of observations: 357
Number of groups: 83
```

```
# EXTRACTING STATISTICS
> logLik(fit.int)
'log Lik.' -640.5730, -628.0026, -695.6520 (df=6)
> coef(fit.int)
                           0.1 0.5 0.9
Intercept
                   -0.9827571 0.3702043 1.8546808
                    0.7738773 0.7569301 0.8009082
time center
treatment
                   -2.6808118 -2.5200997 -1.8623206
time center:treatment -0.7739989 -0.7522610 -0.5907584
> cov.lgmm(fit.int)
$`0.1`
Intercept
2.093377
$`0.5`
Intercept
2.630906
$`0.9`
Intercept
 2.78936
```

```
# RANDOM SLOPE
> system.time(
+ fit.slope <- lgmm(pain logit ~ time center*treatment, random = ~ time center.
group = labor$id, covariance = "pdSymm", data = labor, iota = c(0.1,0.5,0.9))
+ )
  user system elapsed
   8.24 0.00 8.24
> cov.lgmm(fit.slope)
$`0.1`
           Intercept time center
Intercept 1.4655346 0.31884671
time center 0.3188467 0.07266096
$`0.5`
            Intercept time center
Intercept 2.52996615 0.091073866
time center 0.09107387 0.004447338
$`0.9`
            Intercept time center
            1.7134076 -0.17001109
Intercept
time center -0.1700111 0.02155449
> AIC(fit.int)
[1] 1293.146 1268.005 1403.304
> AIC(fit.slope)
[11 1375.718 1268.372 1401.859
```

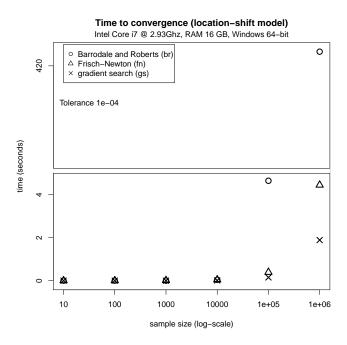
```
# SUMMARY LOMM OBJECT
> fit.int <- lqmm(pain logit ~ time center*treatment, random = ~ 1, group =
laborSid, data = labor, iota = 0.5, type = "robust")
> summary(fit.int)
Call: lgmm(formula = pain logit ~ time center * treatment, random = ~1,
   group = labor$id, data = labor, iota = 0.5, type = "robust")
Ouantile 0.5
                       Value Std. Error lower bound upper bound Pr(>|t|)
                    0.011624 0.161867 -0.313661 0.3369
Intercept
time center
                    treatment -2.989943 0.134250 -3.259729 -2.7202 < 2.2e-16 *** time center:treatment -0.627419 0.092040 -0.812381 -0.4425 1.275e-08 ***
                     scale
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null model (likelihood ratio):
[11\ 183\ (p = 0)
AIC:
[11\ 1304\ (df = 6)]
Warning message:
In errorHandling(OPTIMIZATIONSlow loop, "low", controlSlow loop max iter, :
 Lower loop did not converge in: lgmm. Try increasing max number of iterations
```

(500) or tolerance (0.001)

Concluding remarks

Performance assessment

- pilot simulation: confirmed previous bias and efficiency results but much faster than MCFM
- main simulation: extensive range of models and scenarios
- algorithm speed (preview):
 - Iqmm method "gs" ranged from 0.03 (random intercept models) to 14 seconds (random intercept + slope) on average, for sample size between 250 ($M=50\times n=5$) and 1000 ($M=100\times n=10$)
 - linear programming (quantreg::rq) vs gradient search (lqmm::lqm)



Concluding remarks

Work in progress

- estimation algorithms: "A Gradient Search Algorithm for Estimation of Laplace Regression" (with Prof. Matteo Bottai and Dr Nicola Orsini – Karolinska Institutet) and "Geometric Programming for Quantile Mixed Models"
- methodological: "Linear Quantile Mixed Models" (with M. Bottai) (available upon request m.geraci@ich.ucl.ac.uk)
- software: Iqmm for Stata (with M. Bottai and N. Orsini)

Concluding remarks

To-do list (as usual, very long)

- submit to CRAN!
- plot functions
- adaptive quadrature
- integration on sparse grids (Smolyak, Soviet Mathematics Doklady, 1963, Heiss and Winschel, J Econometrics, 2008)
- missing data
- smoothing
- interface with other packages
- S4-style
- . . .

Acknowledgements

Function	Package	Version	Author(s)
is./make.positive.definite	corpcor	1.5.7	J. Schaefer, R. Opgen-Rhein, K. Strimmer
permutations	gtools	2.6.2	G.R. Warnes
gauss.quad, gauss.quad.prob	statmod	1.4.8	G. Smyth

References

- Clarke F (1990). Optimization and nonsmooth analysis. SIAM.
- Geraci M, Bottai M (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution, *Biostatistics*, 8, 140-54.
- Heiss F, Winschel, V (2008). Likelihood approximation by numerical integration on sparse grids, *J Econometrics*, 144, 62-80.
- Higham N (2002). Computing the nearest correlation matrix a problem from finance, *IMA Journal of Numerical Analysis*, 22, 329-343.
- Koenker R, Bassett G (1978). Regression quantiles, Econometrica, 46. 33-50.
- Machado JAF, Santos Silva JMC (2004). Quantiles for counts, JASA, 100, 1226-1237.
- Smolyak S. (1963). Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Mathematics Doklady, 4, 240-243.

MRC Centre of Epidemiology for Child Health Institute of Child Health, University College London http://www.ucl.ac.uk/ich/homepage

m.geraci@ich.ucl.ac.uk