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Motivation: Munich rental guide

Aim:

@ Provide precise point predictions and prediction intervals for the
net-rent of flats in the city of Munich.

Data:

o Covariates: 325 (mostly) categorical, 2 continuous and 1 spatial
o Observations: 3016 flats

Problem:

@ Heteroscedasticity found in the data

Model not only the expected mean but also the variance = GAMLSS l




The GAMLSS model class

p1
91(p) = nu = Bou + wa(x]) “location”
Jj=1

P2
92(0) = 1o = Pos + Zf]g(as]) “scale”
j=1

Introduced by Rigby and Stasinopoulos (2005)
Flexible alternative to generalized additive models (GAM)
Up to four distribution parameters are regressed on the covariates.
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Every distribution parameter is modeled by its own predictor and an
associated link function gi(-).
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Current fitting algorithm

Fitting algorithms for a large amount of distribution families are provided
by the R package gamlss (Stasinopoulus and Rigby, 2007).

o Estimation is based on a penalized likelihood approach.

e Modified versions of back-fitting (as for conventional GAMs) are used.

These algorithms work remarkably well in many applications, but:
o It is not feasible for high-dimensional data (p > n).

@ No spatial effects are implemented.

@ Variable selection is based on generalized AIC, which is known to be
unstable.

> “More work needs to be done here” (Stasinopoulus and Rigby, 2007).
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Optimization problem for GAMLSS

@ The task is to model the distribution parameters of the conditional
density fyens(y|p, o, v, T)

> The optimization problem can be formulated as

(3.9,7,7) +— argmin By x [p(V, 700,70 (X), 0, (X), - (X) )

~— NN Mo sNr
0 n
with loss function p = —1 , i.e., the negative log-likelihood of the

response distribution:

I= Z log [fdens(yiwi)] = Z log [fdens(yimiu 04, Vi, Ti)]
1=1

=1

> Maximum likelihood approach



Alternative to ML: > Component-wise boosting
Boosting

@ minimizes empirical risk (e.g., negative log likelihood)

@ in an iterative fashion

e via functional gradient descent (FGD).

In boosting iteration m + 1

o Compute (negative) gradient of the loss function and plug in the

current estimate
L — _ Oplyim)

‘ M fp=plm!
[m+1]
(2
o Update: use only the best-fitting base-learner; add a small fraction

v of this estimated base-learner (e.g., 10%) to the model

o Estimate u via base-learners (i.e., simple regression models)

> Variable selection intrinsically within the fitting process J
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Boosting for GAMLSS models

@ Boosting was recently extended to risk functions with multiple
components (Schmid et al., 2010)
Idea > Use partial derivatives instead of gradient

Specify a set of base-learners — one base-learner per covariate
Fit each of the base-learners separately to the partial derivatives
Cycle through the partial derivatives within each boosting step
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@ Cycle through the partial derivatives within each boosting step
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@ Cycle through the partial derivatives within each boosting step
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Variable selection and shrinkage

@ The main tuning parameter are the stopping iterations mgiop 1. They
control variable selection and the amount of shrinkage.

o If boosting is stopped before convergence only the most important
variables are included in the final model.

o Variables that have never been selected in the updated step, are
excluded.

o Due to the small increments added in the update step, boosting
incorporates shrinkage of effect sizes (compare to LASSO), leading to
more stable predictions.

o For large msiop 1 boosting converges to the same solution as the
original algorithm (in low-dimensional settings).

@ The selection of myiep 1, is Normally based on resampling methods,
optimizing the predictive risk.



Data example: Munich rental guide

To deal with heteroscedasticity, we chose a three-parametric t-distribution
with

df
E(y) =pu and Var(y) = U2df— 5

For each of the parameters u, o, and df, we consider the candidate
predictors

Ny = Bou + I;ﬂu + fiu(size;) + fou(year;) + fpat,u(si)

Noy = /800 + xz‘—rﬂcr + fl,a(Sizei) + f2,a(yeari) + fspat,cr(si) y

ndf, = Bodf + ;' Bar + fiae(size;) + foae(year;) + fipat,df(si) -
Base-learners

o Categorical variables: Simple linear models

o Continuous variables: P-splines

o Spatial variable: Gaussian MRF (Markov random fields)
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Package gamboostLSS

o Boosting for GAMLSS models is implemented in the R package
gamboostLSS (> now available on CRAN).

o Package relies on the well tested and mature boosting package
mboost.

o Lots of the mboost infrastructure is available in gamboostLSS as
well (e.g., base-learners & convenience functions).
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Package gamboostLSS

o Boosting for GAMLSS models is implemented in the R package
gamboostLSS (> now available on CRAN).

o Package relies on the well tested and mature boosting package
mboost.

o Lots of the mboost infrastructure is available in gamboostLSS as
well (e.g., base-learners & convenience functions).

Now let’s start and have a short look at some code!
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Package gamboostLSS

## Install package mboost: (we use the R-Forge version as the
## bmrf base-learner is not yet included in the CRAN version)
install.packages ("mboost",

repos = "http://r-forge.r-project.org")
## Install and load package gamboostLSS:
install.packages ("gamboostLSS")
library("gamboostLSS")

vV V.V + VvV VYV



(Simplified) code to fit the model

> ## Load data first, and load boundary file for spatial effects

> ## Now set up formula:

> form <- paste(names(data)[1], " ~ ",
paste (names (data) [-c(1, 327, 328, 329)], collapse = " + "),
" + bbs(wfl) + bbs(bamet) + bmrf(region, bnd = bound)")

> form <- as.formula(form)

> form

nmgms ~ erstbezg + dienstwg + gebmeist + gebgruen + hzkohojn +
+

bbs(wfl) + bbs(bamet) + bmrf(region, bnd = bound)
> ## Fit the model with (initially) 100 boosting steps
> mod <- gamboostLSS(formula = form, families = StudentTLSS(),
control = boost_control (mstop = 100,

trace = TRUE),
baselearner = bols,
data = data)

e P -- risk: 3294.323
...................................... -- risk: 3091.206

Final risk: 3038.919
~ useR! 2011 (Benjamin Hofner) = gamboosttSS  12/18
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(Simplified) code to fit the model (ctd.)

## optimal number of boosting iterations fund by 3-dimensional
## cross-validation on a logarithmic grid resulted in

## 750 (mu), 108 (sigma), 235 (df) steps;

## Let model run until these values:

mod[c (750, 108, 235)]

## Let’s look at the number of variables per parameter:
sel <- selected(mod)
lapply(sel, function(x) length(unique(x)))

VVVVVVVVYV

$mu
[1] 115

$sigma
[1] 31

$df
[11 7

> ## (Very) sparse model (only 115, 31 and 5 base-learners out of 328)



(Simplified) code to fit the model (ctd.)

> ## Now we can look at the estimated parameters
> ## e.g., the effect of roof terrace on the mean

> coef (mod, which = "dterasn", parameter = "mu")
$‘bols(dterasn) ¢
(Intercept) dterasn

-0.004254606 0.293792997

> ## We can also easily plot the estimated smooth effects:
> plot(mod, which = "bbs(wfl)", parameter = "mu",

+ xlab = "flat size (in square meters)", type = "1")
1.0
=
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flat size (in square meters)
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Results: spatial effects

GAMLSS: p GAMLSS: o

.—’f?)""

-0.4648 0 0.4616 -0.1665 0.0245

Estimated spatial effects obtained for the high-dimensional GAMLSS
for distribution parameters 1 and o. For the third parameter df, the
corresponding variable was not selected.



Results: prediction intervals

GAMLSS GAM

25
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95% prediction intervals based on the quantiles of the modeled
conditional distribution. Coverage probability GAMLSS 93.93%
(92.07-95.80); coverage probability GAM 92.23% (89.45-94.32).
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Summary

@ As gamboostLSS relies on mboost, we have a well tested, mature
back end.

@ The base-learners offer great flexibility when it comes to the type of
effects (linear, non-linear, spatial, random, monotonic, ...).

o Boosting is feasible even if p > n.

o Variable selection is included in the fitting process. Additional
shrinkage leads to more stable results.

The algorithm is implemented in the R add-on package gamboostLSS
> now available on CRAN. J
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