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Emulation
A brief introduction

Computer models are examples of
complex functions

over high dimensions
that are slow to evaluate.

We would like to predict a model’s behaviour
without running the model.

An emulator is a statistical representation
of a complex function
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Emulation
A brief introduction

An emulator is a statistical
representation of a complex function

For a collection x̃ of input points it gives us

I a probability distribution for the function’s value, s (x̃)

I conditional on some known function values, (x, s(x))

We stipulate that

I at ‘training points’, where we know s(x), the emulator gives
the same value, with certainty

I at other points, the approximation should be ‘plausible’, and
reflect our uncertainty.
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Emulation
A brief introduction

We represent the function’s value for input x as

s(x) =

p∑
i=1

gi (x)βi︸ ︷︷ ︸
Regression surface

+ ε(x)︸︷︷︸
Correlated error

.

I The regression surface captures the general trend

I The correlated error term forces the emulator to interpolate
the training data
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Emulation
Why objects?

I Encapsulation - information that belongs together is
collected as one object

I Efficiency - time-consuming computations can be performed
just once

I Tidiness - changes and additions to code are simpler to make

I Methods - objects can be created from various beginnings
using multiple dispatch
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Structure
How it works (or how it should work. . . )

Crudely, there are three stages to emulation

1. Collect function data, with which to train the emulator

2. Make choices about the emulator: regression functions, correlated
error behaviour

3. Use the emulator to predict new function values.

This leads to three stages in the code:

1. data.object <-

model.data(input and output data, function information)

2. emulator.object <-

emu.model(data.object, regression and correlation choices)

3. prediction.object <-

emu.predict(emulator.object, new input points)
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Structure
An overview
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Structure
Organising model data
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Classes
“model.data”

Ingredients :

I function data (possibly containing output values too)

I ranges for input variables

Slots:

I input: a data frame of input values

I oldrange: a data.frame of input ranges

I (optional) outvec and outname: output data

“rescale” - a method for “model.data”

model.data

object

new range

vector

data frame of

rescaled model data
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Classes
How the data fits into the structure

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Simulator

output

Regression

surface

Correlated

error
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Classes
“reg.func” - regression functions

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Regression

surface

I How many inputs should be active?
I Should the inputs be transformed?
I What order polynomial?
I How would we like to choose terms?

I Do we already know what functions

we’d like?

• Functions

• Active variables
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Classes
“corr.mats” - correlation matrix

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Correlated

error

Correlation is determined by
correlation lengths
I Same values in each dimension?
I “optimise” them using the data?

I Add ‘nugget’ onto the diagonal?

• Correlation matrix

• Cholesky factori-

sation of correlation

matrix
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Structure
Creating correlation and regression objects
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Structure
Collecting information together
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Classes
“emu.model” - everything ready to predict

The data, regression and correlation objects together can make an
“emu.model” object, containing

• data.obj (“model.data”) } Objects we’ve seen• func.obj (“reg.func”)
• cm.obj (“corr.mats”)

• HcmH (“matrix”) } Stored for computations• chol.HcmH (“matrix”)

• sig.hat.sq (“numeric”) } Estimated residual variance
and regression coefficients• beta.hat (“vector”)

This contains all the information we need to evaluate the
probability distribution of output at new input points
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Structure
Predicting new model output
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Classes
“emu.predict” - predicting new function values

Given model data s(x), and new inputs x̃,
s (x̃) | s (x) has a location-scale multivariate t-distribution.

An “emu.predict” object contains

I mod - the “emu.model” used

I xnew - the new input points

I loc - vector of expected outputs (the location of the
t-distribution)

I scale - the scale matrix (linked to variance)

I deg.f - the degrees of freedom of the t-distribution
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Structure
Changing objects

One method, “change.obj”, which requires

I object - an object (from this emulation structure)

I changes - a list of arguments to change

and creates a new object of the same class.

Advantages of this method:

I quicker - one command to remake the object

I more transparent - what’s changed is clear

I less error prone - prevents use of wrong data (or deletion)
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Structure
Using “change.obj” to change correlation length, from an “emu.predict” object
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Summary

S4 objects are an effective approach to emulation:

I administration - vital information for an emulator is held
together (helpful for reproducibility)

I efficiency - costly calculations needn’t be repeated

I transparency - class descriptions enforce structure

I adaptability - methods can be added / changed without
upsetting the wider structure
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