
An S4 Object structure for emulation
The approximation of complex functions

Rachel Oxlade

Department of Mathematical Sciences
University of Durham

Supervised by Peter Craig and Michael Goldstein

With thanks to CRISM for sponsorship
and NERC for funding

August 15, 2011

Rachel Oxlade An S4 Object structure for emulation



Emulation
A brief introduction

Computer models are examples of
complex functions

over high dimensions
that are slow to evaluate.

We would like to predict a model’s behaviour
without running the model.

An emulator is a statistical representation
of a complex function

Rachel Oxlade An S4 Object structure for emulation



Emulation
A brief introduction

An emulator is a statistical
representation of a complex function

For a collection x̃ of input points it gives us

I a probability distribution for the function’s value, s (x̃)

I conditional on some known function values, (x, s(x))

We stipulate that

I at ‘training points’, where we know s(x), the emulator gives
the same value, with certainty

I at other points, the approximation should be ‘plausible’, and
reflect our uncertainty.

Rachel Oxlade An S4 Object structure for emulation



Emulation
A brief introduction

We represent the function’s value for input x as

s(x) =

p∑
i=1

gi (x)βi︸ ︷︷ ︸
Regression surface

+ ε(x)︸︷︷︸
Correlated error

.

I The regression surface captures the general trend

I The correlated error term forces the emulator to interpolate
the training data

Rachel Oxlade An S4 Object structure for emulation



Emulation
Why objects?

I Encapsulation - information that belongs together is
collected as one object

I Efficiency - time-consuming computations can be performed
just once

I Tidiness - changes and additions to code are simpler to make

I Methods - objects can be created from various beginnings
using multiple dispatch

Rachel Oxlade An S4 Object structure for emulation



Structure
How it works (or how it should work. . . )

Crudely, there are three stages to emulation

1. Collect function data, with which to train the emulator

2. Make choices about the emulator: regression functions, correlated
error behaviour

3. Use the emulator to predict new function values.

This leads to three stages in the code:

1. data.object <-

model.data(input and output data, function information)

2. emulator.object <-

emu.model(data.object, regression and correlation choices)

3. prediction.object <-

emu.predict(emulator.object, new input points)

Rachel Oxlade An S4 Object structure for emulation



Structure
An overview

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Structure
Organising model data

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Classes
“model.data”

Ingredients :

I function data (possibly containing output values too)

I ranges for input variables

Slots:

I input: a data frame of input values

I oldrange: a data.frame of input ranges

I (optional) outvec and outname: output data

“rescale” - a method for “model.data”

model.data

object

new range

vector

data frame of

rescaled model data

Rachel Oxlade An S4 Object structure for emulation



Classes
How the data fits into the structure

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Simulator

output

Regression

surface

Correlated

error

Rachel Oxlade An S4 Object structure for emulation



Classes
“reg.func” - regression functions

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Regression

surface

I How many inputs should be active?
I Should the inputs be transformed?
I What order polynomial?
I How would we like to choose terms?

I Do we already know what functions

we’d like?

• Functions

• Active variables

Rachel Oxlade An S4 Object structure for emulation



Classes
“corr.mats” - correlation matrix

o

o

o

o

s(x) =
p∑

i=1
gi (x)βi + ε(x)

Correlated

error

Correlation is determined by
correlation lengths
I Same values in each dimension?
I “optimise” them using the data?

I Add ‘nugget’ onto the diagonal?

• Correlation matrix

• Cholesky factori-

sation of correlation

matrix

Rachel Oxlade An S4 Object structure for emulation



Structure
Creating correlation and regression objects

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Structure
Collecting information together

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Classes
“emu.model” - everything ready to predict

The data, regression and correlation objects together can make an
“emu.model” object, containing

• data.obj (“model.data”) } Objects we’ve seen• func.obj (“reg.func”)
• cm.obj (“corr.mats”)

• HcmH (“matrix”) } Stored for computations• chol.HcmH (“matrix”)

• sig.hat.sq (“numeric”) } Estimated residual variance
and regression coefficients• beta.hat (“vector”)

This contains all the information we need to evaluate the
probability distribution of output at new input points

Rachel Oxlade An S4 Object structure for emulation



Structure
Predicting new model output

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Classes
“emu.predict” - predicting new function values

Given model data s(x), and new inputs x̃,
s (x̃) | s (x) has a location-scale multivariate t-distribution.

An “emu.predict” object contains

I mod - the “emu.model” used

I xnew - the new input points

I loc - vector of expected outputs (the location of the
t-distribution)

I scale - the scale matrix (linked to variance)

I deg.f - the degrees of freedom of the t-distribution

Rachel Oxlade An S4 Object structure for emulation



Structure
Changing objects

One method, “change.obj”, which requires

I object - an object (from this emulation structure)

I changes - a list of arguments to change

and creates a new object of the same class.

Advantages of this method:

I quicker - one command to remake the object

I more transparent - what’s changed is clear

I less error prone - prevents use of wrong data (or deletion)

Rachel Oxlade An S4 Object structure for emulation



Structure
Using “change.obj” to change correlation length, from an “emu.predict” object

model.data

emu.model

emu.predict

reg.func

corr.mats

simulator

data

input

ranges

options

correlation

lengths

new input

data

Rachel Oxlade An S4 Object structure for emulation



Summary

S4 objects are an effective approach to emulation:

I administration - vital information for an emulator is held
together (helpful for reproducibility)

I efficiency - costly calculations needn’t be repeated

I transparency - class descriptions enforce structure

I adaptability - methods can be added / changed without
upsetting the wider structure

Rachel Oxlade An S4 Object structure for emulation


