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Introduction

Introduction

What can you do with the SHOGUN Machine Learning Toolbox [6]?
o Types of problems:

Clustering (no labels)

Classification (binary labels)

Regression (real valued labels)
Structured Output Learning (structured labels)

@ Main focus is on Support Vector Machines (SVMs)
@ Also implements a number of other ML methods like

o Hidden Markov Models (HMMs)
o Linear Discriminant Analysis (LDA)
o Kernel Perceptrons




Introduction

Support Vector Machine

e Given: Points x; € X (i =1,..., N) with labels
yi € {-1,+1}
@ Task: Find hyperplane that maximizes margin
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Decision function f(x) =w-x+ b
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Introduction

SVM with Kernels

@ SVM decision function in kernel feature space:

N
F(x) =Y yiaid(x) - O(x;) + b (1)
i=1 =k(x,x;)

@ Training: Find parameters «

e Corresponds to solving quadratic optimization problem (QP)
=fml



Features

Large-Scale SVM Implementations

Different SVM solvers employ different strategies

Provides generic interface to 11 SVM solvers

Established implementations for solving SVMs with kernels

o LibSVM
o SVM'ENt

@ More recent developments: Fast linear SVM solvers

o LibLinear
o SvmOCAS [1]

@ Support of Multi-Threading

= We have trained SVMs with up to 50 million training examples




Features

Large Scale Computations

@ Training time vs sample size
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Features

Various Kernel Functions

@ Kernels for real-valued data

(a) Linear

(b) Polynomial

(c) Gaussian




Features

Various Kernel Functions

@ Kernels for real-valued data

(d) Linear (e) Polynomial

= What if my data looked like...

(f) Gaussian




Features

Various Kernel Functions

...this?!




Features

Various Kernel Functions

@ String Kernels

o Applications in Bioinformatics [3, 5, 7], Intrusion Detection
o ldea of Weighted Degree String Kernel
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K(s1,S2) = W7 +Wi1 + Wa+ W2 + W3

o Heterogeneuous Data Sources

o CombinedKernel class to construct kernel from weighted linear
combination of subkernels

M
K(x,z) = Zﬂi - Ki(x, 2)
i=1

o f3; can be learned using Multiple Kernel Learning [4, 2]



Features

Interoperability

@ Supports many programming languages
o Core written in C++ (> 130,000 lines of code)
R-bindings using SWIG (Simple Wrapper Interface Generator)
Additional bindings: Python, Matlab, Octave
More to come, e.g. Java
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@ Supports many data formats

o SVMEht 1ibSVM, CSV
o HDF5

o Community Integration

Documentation available, many many examples (> 600)
Source code is freely available

There is a Debian Package, MacOSX

Mailing-List, public SVN repository (read-only)

Part of MLOSS.org
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Code Example

Simple Code Example

Simple code example: SVM Training

# given: features, labels, test as R-data structures
lab <- Labels(labels)

train <- RealFeatures(features)

gk <- GaussianKernel(train, train, 1.0)

svm <- LibSVM(10.0, gk, lab)

svm$train()

out <- svm$predict(test)

@ It's easy to train & predict
o Generic interface to many solvers (e.g. LibSVM — SVMLight)
@ SVM accepts any kernel (e.g. GaussianKernel — PolyKernel)




Summary

When is SHOGUN for you?

@ You want to work with SVMs (11 solvers to choose from)

@ You want to work with Kernels (35 different kernels)
= Esp.: String Kernels / combinations of Kernels

@ You have large scale computations to do (up to 50 million)

@ You use one of the following languages:
R, Python, octave/MATLAB, C++

o Community matters: mloss.org, mldata.org
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Summary

Thank you!

Thank you for your attention!!

For more information, visit:
@ Implementation http://www.shogun-toolbox.org
@ More machine learning software http://mloss.org
@ Machine Learning Data http://mldata.org



http://www.shogun-toolbox.org
http://mloss.org
http://mldata.org
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