Sparse Model Matrices for Generalized Linear
Models

Martin Maechler and Douglas Bates

(maechler|bates)@R-project.org (R-Core)

Seminar fiir Statistik
ETH Zurich Switzerland Department of Statistics

University of Madison, Wisconsin U.S.A.

useR! 2010, Gaithersburg
July 21, 2010

Outline

Sparse Matrices
Sparse Model Matrices
modelMatrix — General Linear Prediction Models

Mixed Modelling in R: 1me4

Introduction

» Package Matrix: a recommended R package — part of every
R.

» Infrastructure for other packages for several years, notably
1me4!

> Reverse depends (2010-07-18): ChainLadder, ColloclInfer,
EquiNorm, FAIR, FTICRMS, GLMMarp, GOSim,
GrassmannOptim, HGLMMM, MCMCglmm, Metabonomic,
amer, arm, arules, diffusionMap, expm, gamlss.util, gamm4,
glmnet, klin, languageR, Ime4, mclogit, mediation, mi,
mlmRev, optimbase, pedigree, pedigreemm, phybase, qgen,
ramps, recommenderlab, spdep, speedglm, sphet, surveillance,
surveyNG, svcm, systemfit, tsDyn, Ringo

» Reverse suggests: another dozen ...

!lme4 := (Generalized—) (Non-) Linear Mixed Effect Modelling,
(using S4 | re-implemented from scratch the 4*® time)

Intro to Sparse Matrices in R package Matrix

» The R Package Matrix contains dozens of matrix classes and
hundreds of method definitions.

» Has sub-hierarchies of denseMatrix and sparseMatrix.

» Quick intro in some of sparse matrices:

simple example — Triplet form

The most obvious way to store a sparse matrix is the so called
“Triplet” form; (virtual class TsparseMatrix in Matrix):

> A <- spMatrix(10, 20, i = ¢(1,3:8),

+ j c(2,9,6:10),

+ x=7=* (1:7))

> A # a "dgTMatrix"

10 x 20 sparse Matrix of class "dgTMatrix"

(1,1 . 7.

2,1
3,114
4,121 .

5,128 .

6,13 .
(7,142 ..
8,149 .
[9,]

[10,]

Less didactical, slighly more recommended: A1 <-
sparseMatrix(.....)

simple example — 2 —

> str(A) # note that *internally* O-based indices (i,j) are used

Formal class ’dgTMatrix’ [package "Matrix"] with 6 slots
..0 i :int [1:7] 0234567
..0 j : int [1:7] 18567 89
..@ Dim : int [1:2] 10 20
..0@ Dimnames:List of 2
..$: NULL
..$: NULL
..0 x :num [1:7] 7 14 21 28 35 42 49
..0@ factors : list(Q)

> A[2:7, 12:20] <- rep(c(0,0,0,(3:1)%30,0), length = 6x*9)
What to expect from a comparison on a sparse matrix?

> A >= 20
probably a logical sparse matrix .. .:

> A >= 20 # -> logical sparse. Observe show() method

10 x 20 sparse Matrix of class "lgTMatrix"

(1,7 .« s

2,1 010

3,1 . . .« . . . oo
4,11 . 000
5,11 .o o000
6,110 0. .. 011
7% O R A I e I
8,11

[9,]

[10,]

Note “:", a “non-structural” FALSE, logical analog of

non-structural zeros printed as “0" as opposed to ".":

> 1x(A >= 20)
[1,] .0 . . . e e
2,11
3,70.
(4,11..
5,1..
6,11..
(7,11.

- - N

e
=
=
e
L
L e
=
=

sparse compressed form

Triplet representation: easy for us humans, but can be both made
smaller and more efficient for (column-access heavy) operations:
The “column compressed” sparse representation:

> Ac <- as(t(A), "CsparseMatrix")

> str(Ac)

Formal class ’dgCMatrix’ [package "Matrix"] with 6 slots
R : int [1:30] 1 13 14 15 8 14 15 16 5 15 ...
..@p : int [1:11] 0 1 4 8 12 17 23 29 30 30 ...
..@ Dim : int [1:2] 20 10
..Q@ Dimnames:List of 2

..$: NULL
..$: NULL
..0 x : num [1:30] 7 30 60 90 14 30 60 90 21 30 ...

..0@ factors : list(Q)

Column index slot j
replaced by a column pointer slot p.

CHANGE since talk (July 21, 2010):

» model.Matrix(),

> its result classes,

> all subsequent modeling classes,
> glmd (), etc

have been “factored out” into (new) package MatrixModels.
(2010, End of July on R-forge; Aug. 6 on CRAN)

Sparse Model Matrices

New model matrix classes, generalizing R's standard

model .matrix():
> str(dd <- data.frame(a = gl(3,4), b

gl(4,1,12)))# balanced 2

’data.frame’: 12 obs. of 2 variables:
$ a: Factor w/ 3 levels "1","2","3": 1 1 1
$ b: Factor w/ 4 levels "1","2" "3" "4": 1

N
w N
NN
=N
NN
w w
oW
—

N

> model.matrix(~ 0+ a + b, dd)

al a2 a3 b2 b3 b4

1 10 0 0 0 O
2 1 0 0 1 0 O
3 1 0 0 0 1 O
4 1 0 0 0 0 1
5 01 0 0 0 O
6 0 1 0 1 0 O
7 01 0 0 1 O
8 0 1 0 0 0 1
9 0 0 1 0 0 O
10 0 0 1 1 0 O
110 0 1 0 1 O
12 0 0 1 0 0 1

)
t
t
]
§
]
)
)
.
x
l
=

Sparse Model Matrices
The model matrix above
> .. has many zeros, and
» ratio ((zeros) : (non-zeros)) increases dramatically with
many-level factors
» even more zeros for factor interactions:
> model .matrix(~ 0+ a *x b, dd)

al a2 a3 b2 b3 b4 a2:b2 a3:b2 a2:b3 a3:b3 a2:b4 a3:b4d

1 1 0 0 0 0 O 0 0 0 0 0 0
2 1 0 0 1 0 O 0 0 0 0 0 0
3 10 0 0 1 O 0 0 0 0 0 0
4 1 0 0 0 0 1 0 0 0 0 0 0
5 01 0 0 0 O 0 0 0 0 0 0
6 0 1 0 1 0 O 1 0 0 0 0 0
7T 01 0 0 1 O 0 0 1 0 0 0
8 0 1 0 0 0 1 0 0 0 0 1 0
9 0 0 1 0 0 O 0 0 0 0 0 0
10 0 0 1 1 0 O 0 1 0 0 0 0
11 0 0 1 0 1 O 0 0 0 1 0 0
12 0 0 1 0 0 1 0 0 0 0 0 1

attr(,"assign")
M1 14 14 14 999 222 2 22

Sparse Model Matrices in "MatrixModels’

» These matrices can become very large: Both many rows (large
n), and many columns, large p.

» Eg., in Linear Mixed Effects Models,

E(YB=0b)= X8+ Zb,

» the Z matrix is often large and very sparse, and in 1me4 has
always been stored as "sparseMatrix" ("dgCMatrix",
specifically).

» Sometimes, X, (fixed effect matrix) is large, too.

— optionally also "sparseMatrix" in 1me4?.

» We've extended model .matrix() to model.Matrix() in

package MatrixModels with optional argument sparse =
TRUE.

2the development version of 1me4, currently called 1me4a.

Sparse Model Matrix Classes in 'MatrixModels’

setClass("modelMatrix",

representation(assign = "integer",

contrasts = "list", "VIRTUAL"),
contains = "Matrix",
validity = function(object) { 19

setClass("sparseModelMatrix", representation("VIRTUAL"),
contains = c("CsparseMatrix", "modelMatrix"))
setClass("denseModelMatrix", representation("VIRTUAL"),
contains = c("denseMatrix", "modelMatrix"))
The ‘‘actual’’ *ModelMatrix classes:
setClass("dsparseModelMatrix",
contains = c("dgCMatrix", "sparseModelMatrix"))
setClass("ddenseModelMatrix", contains =
c("dgeMatrix", "ddenseMatrix", "denseModelMatrix"))

("ddenseMatrix": not for slots, but consistent superclass
ordering)

model.Matrix(*, sparse=TRUE)

Constructing sparse models matrices (MatrixModels package):
> model.Matrix(~ O+ a * b, dd, sparse=TRUE)

"dsparseModelMatrix": 12 x 12 sparse Matrix of class "dgCMatrix"

1 1.

2 1. 1. .

3 1 1. .

4 1 . . 1.

5 1. .o

6 1.1 1.

7 .1 1 o1

g8 . 1. 1 .o 1
9 1 .

10 . 11 o1

11 B T
12 . 1 1 R 1

@ assign: 111222333333
@ contrasts:
$a

[1] "contr.treatment"

$b

"modelMatrix’ —— General Linear Prediction Models

Idea: Very general setup for

Statistical models based on linear predictors
Class "glpModel" := General Linear Prediction Models

setClass("Model", representation(call = "call", fitProps = "list
"VIRTUAL"))
setClass("glpModel", representation(resp = "respModule",

pred = "predModule"),
contains = "Model")

Two main ingredients:
1. Response module "respModule"
2. (Linear) Prediction module "predModule"

(1) Response Module
"respModule": Response modules for models with a linear
predictor, which can include linear models (1m), generalized linear
models Eglm), nonlinear models (nls) and generalized nonlinear

models (nglm):
setClass("respModule",
representation(mu = "numeric", # of length n
offset = "numeric", # of length n * s
sqrtXwt = "matrix", # of dim(.) == (n, s)
sqrtrwt = "numeric", # sqrt(residual weights)
weights = "numeric", # prior weights
wtres = "numeric",
y = "numeric"),
validity = function(object) { B
setClass("glmRespMod",
representation(family = "family",
eta = "numeric",
n= "numeric"), # for evaluation of the
contains = "respModule", validity=function(object) { })
setClass("nlsRespMod",
representation(nlenv = "environment",) I,)

setClass("nglmRespMod", contains = c("glmRespMod", "nlsRespMod")

(2) Prediction Module

"predModule": Linear predictor module consists of
» the model matrix X,
» the coefficient vector coef,
» a triangular factor of the weighted model matrix fac,

» (Vtr = VTr, where r = residuals (typically)

currently in and sparse flavor:
setClass("predModule",
representation(X = "modelMatrix", coef = "numeric",
Vtr = "numeric", fac = "CholeskyFactorizatio
"VIRTUAL"))

sub classes: more specific classes for the two non-trivial sl

setClass("dPredModule", contains = "predModule",
representation(X = "ddenseModelMatrix", fac = "Cholesky

setClass("sPredModule", contains = "predModule",
representation(X = "dsparseModelMatrix", fac = "CHMfact

Fitting all “glpModel”s with One IRLS algorithm

Fitting via IRLS (Iteratively Reweighted Least Squares), where the
prediction and response module parts each update “themselves”.

These 3 Steps are iterated till convergence:

1. prediction module (PM) only passes X %*), coef= X to the
response module (RM)
2. from that, the RM

» updates its p,
> then its weighted residuals and “X weights”

3. these two are in turn passed to PM which
> reweights itself and
» solve()s for AB, the increment of 3.

Convergence only if Bates-Watts orthogonality criterion is fulfilled.

Mixed Modelling - (RE)ML Estimation

In (linear) mixed effects,

(Y|B =b) ~ N(XB+ Zb,5°I)
B~ N(0,%), and (1)
S = 0’ Aghyg,
the evaluation of the (RE) likelihood or equivalently deviance,

needs repeated Cholesky decompositions (including fill-reducing
permutation P)

LyLT =P (AJZTZAG n Iq) P, (2)

for many #'s and often very large, very sparse matrices Z and Ay
where only the non-zeros of A depend on @, i.e., the sparsity
pattern (incl. fill-reducing permutation P)and f is given (by the
observational design).

Mixed Modelling - (RE)ML Estimation

Sophisticated (fill-reducing) Cholesky done in two phases:

1. “"symbolic” decomposition: Determine the non-zero entries of
L (LLT=UUT +1),

2. numeric phase: compute these entries.

Phase 1: typically takes much longer; only needs to happen
once.

Phase 2: “update the Cholesky Factorization”

Summary

» Sparse Matrices: used in increasing number of applications
and R packages.
» Matrix (in every R since 2.9.0)
1. has model.Matrix(formula, , sSparse =
TRUE/FALSE)
2. has class "glpModel" for linear prediction modeling
3. has (currently hidden) function glm4 (); a proof of concept,
(allowing “glm” with sparse X'), using very general IRLS ()
function [convergence check by stringent Bates and Watts
(1988) orthogonality criterion]
» 1lmeda on R-forge (= next generation of package 1me4) is
providing
1. Imer (), glmer(), nlmer (), and eventually gnlmer (), all
making use of modular classes (prediction [= fixed eff. +
random eff.] and response modules) and generic algorithms
(e.g. "PIRLS").
2. All with sparse (random effect) matrices Z and Ay (where
Var(B) = 02AgA}),
3. and optionally (sparseX = TRUE) sparse fixed effect matrix,
X.

	Sparse Matrices
	Sparse Matrices in package Matrix

	Sparse Model Matrices
	modelMatrix -3mu General Linear Prediction Models
	Mixed Modelling in R: =-1 lme4

