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Magnetic Resonance Imaging (MRI) R

@ MRI is a non-invasive method for imaging the
inside of objects.

@ MRI has many medical applications.
o Different contrast: T1, T2, PD

@ Sometimes more than one image type is
available.

@ Each image is a 3D array of image intensities,
one for each voxel (volume picture element).
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Brain Tissue Classification 2

@ Major brain tissue types:
o White matter (WM)
o Gray Matter (GM)
o Cerebrospinal fluid (CSF)
There are others, but tissue classification
usually focuses on these.
@ Some applications:

o Diagnosis of disease
o Surgery preparation

@ Manual tissue classification is very labor WM = light gray

intenSiVe. GM = medium gray
CSF = dark gray

o Automated methods try to match quality of
manual at lower cost.

@ Focus on using intensities in a T1 MR
image.
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Basic Properties of the Data R

Data consist of image intensities yi, ..., yy for N voxels in a 3D grid.
N is large, for example 256 x 256 x 192.
Intensities are often scaled to [0, 255] and rounded to an integer.

Tissue types are denoted by z; € {1,..., k} with k = 3 corresponding
to three tissue types.

A density plot of a relatively low noise MR image:
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A Simple Mixture Model R

@ A common model: given the tissue structure z, intensities are

e independent
e normally distributed,

yilzi ~ N(u(z),0%(z:))

Mean and and variance depend on the tissue type.

(]

Assuming tissue types are independent leads to a simple normal
mixture model

HZ(Z)MZ,)O' (zi) yl) (I_k)

i=1z=

Parameters are easily estimated by the EM algorithm.

Tissue types can be assigned using the Bayes classifier.
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Incorporating Spatial Information 2

Adjacent voxels are likely to contain the same tissue type.

A more realistic model accounts for this spatial homogeneity in z.

The Potts model family provides simple models for spatial
homogeneity:

p(z) = C(B) " exp Z ai(zj) + ¢ Z wiif (i, z))

@ This is an example of a Markov random field model.
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Incorporating Spatial Information 2
Iterated Conditional Modes

The hidden Markov normal mixture model
p(y|z. 1, 02)p(z)

can be fitted by

o Iterated Conditional Modes (ICM) algorithm—
alternately maximizing each parameter conditional on all others being

fixed.
e Hidden Markov Random Field EM (HMRFEM) algorithm—
a variation of EM algorithm in the E step.
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Incorporating Spatial Information 2

A Bayesian Formulation

o Alternatively, we can
o specify a prior distributions p(u,52) on p, o2
o use MCMC to compute characteristics of the posterior distribution

p(p, o2, zly)

o Assume p, 02,z are independent and

e p i.i.d. normal distribution
o o2 i.i.d inverse Gamma distribution

@ Then the full conditionals satisfy

e u independent normal
o o2 independent inverse Gamma
e z Potts model with external field

ai(z) = log f(yilu(z), o(z))
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Partial Volume Effect 2

@ Partial volume effect—some voxels contain more than one tissue type.

@ One approach is to introduce intermediate classes: CG (CSF/GM)
and GW (GM/WM).

@ This helps reduce confounding in estimation.

@ A number of studies have used this approach.

@ Normal mixture model with dependent means and variances (GPV)

performs well.
o The means and variances of CG and GW are equal to weighted average
of corresponding pure tissues
o The densities of voxels from CG and GW are equal to mean densities
based on the distribution of weights
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A Higher Resolution Spatial Model R

We have adopted a different approach:
@ Each voxel is divided in half in the x, y, z directions, producing 8

subvoxels.
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@ Each subvoxel is viewed as containing only one tissue type.

@ The observed voxel intensity y; is
Yi=Vii+...+ Vg

where vj1, ..., vig are the unobserved subvoxel intensities.
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A Higher Resolution Spatial Model R
The Subvoxel-level Model

o Conditional on the tissue types, the vj; are independent normals

@ A spatial model is used at the subvoxel level

@ To capture the fact that CSF and WM rarely coexist in a voxel we use:

p(z) = C(Br, B2) Texpq > f(zi,2)

inj
where
51 if Zi = Zj
f(zi,zj)) =< —p if {zi,zj} = {CSF,WM}
0 otherwise

We call this model the Repulsion Potts Model

@ Use a Bayesian formulation to solve it
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Computational Issues—Table Lookup R

Table lookup methods are used in various places due to:

@ the nature of the data—
intensities are integers between 0 and 255.

@ the nature of the distribution from the Potts family—
given neighbors, the tissue type of voxels having the same discrete
distribution.
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Computational Issues—Conditional Independence

o If the voxels are organized in a checkerboard pattern,

é‘
@

then black voxels are conditionally independent given white ones.

@ Black and white voxels can each be updated as a group.
@ This can be used for vectorized computation.

@ This can also be used for parallel computation.
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Computational Issues OpenMP R

Specifying parallel execution
by compiler pragmas (directives)

- fpragmaomp|parallel for|[firstprivate|(«
k, 1dD, ...) Specifying variable type
or (i = 0; i <mn; it++) {

Implicit barrier
for synchronization

for (i = 0; i <mn; i++) {
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Computational Issues——OpenMP R

Performance of the Parallel Code

Speadup
1

Mumber of Frocessors
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Overview of Functions of the Package R

@ The "Analyze”, "NIfTI”, and raw byte file formats are supported for
input and output

o Different functions for different methods are provided

@ Initial values of the means, variances, and proportions of normal
mixture models can be generated by the function initOtsu

@ Various spatial input parameters for different methods can be
obtained using the function makeMRIspatial

@ There is a wrapper for functions with easier usage
mritc(intarr, mask, method)

o Generic summary and plot methods are provided for the object of
class " mritc”

@ Different metrics for accuracy of predictions based on truth are
available
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Example 2

Tl <- readMRI("tl.rawb.gz", c(181,217,181),
format="rawb.gz")
slices3d(T1)
mask <- readMRI("mask.rawb.gz", c(181,217,181),
format="rawb.gz")
tc <- mritc(T1, mask, method="MCMCsub")

plot(tc)
Figure: Tissue Classification
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