
Method comparison studies are used to compare the measurements made of 
the same quantity using different instruments, monitors, devices or methods. 
Researchers often try to compare the measurements made by just two 
devices, in some cases using regression analysis. As is well known, when 
both devices are subject to measurement error (ME), regression analysis 
presents a distorted view of the actual bias (or shows bias when none 
exists). Analogously, correlation is often used to describe the agreement 
even though correlation only measures linear association and cannot provide 
any insight into agreement of the two instruments. Other researchers resort 
to the use of Bland-Altman plots (paired differences versus paired 
averages). This approach is useful if there is good agreement but provides 
no way to determine the cause of poor agreement.

A more fruitful and general approach is provided by using the classic ME 
model (Jaech, 1985):

X ij=ii jij

where μ j denotes the “true” but unknown value of the jth item being 
measured (often assumed to be Normally distributed with mean  and 
standard deviation i ), X ij denotes the observed measurement from 
instrument i for item j,i and i describe the bias introduced by the 
instrument (assumed to be a linear function of  ), and ij denotes a Normally 
distributed random error of instrument i and item j with mean of 0 and 
standard deviation of i . The instrument imprecision adjusted for 
differences in scale is given by i / i . The ME model can be described using 
a path diagram with  as a latent variable and X i as manifest variables, and 
represented as a structural equation model (SEM). SEM path analysis 
readily explains the deficiencies of using only two devices and the necessity 
of including repeats and/or 3 or more devices. SEMs can easily include 
repeated measurements, or, for example as in ophthalmology, having 
measurements from both eyes. Parameter estimates can be made using the 
method of moments (MOM) or the method of maximum likelihood (ML). 
Using these estimates, calibration equations relating measurements from 
different instruments can be easily derived.

The merror package (Bilonick, 2003) provides the function ncb.od (non-
constant bias, original data) for computing ML estimates of the ME 
imprecision standard deviations for unclustered data and least squares 
estimates of i . The function lrt tests whether i=i ' . For clustered data, 
the more flexible OpenMx (SEM) package (Boker, et al., 2010) can be used 
for ML estimates of any desired (functions of) model parameters. When 
using OpenMx for ME models, merror can be used to provide good 
starting values for the parameter estimates. 

The calibration equation relating any two methods i and j is then:
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These methods are illustrated using data from an from air pollution study. 
Structural equation modeling can be easily extended to clustered data. For 
example, in ophthalmic studies, typically both eyes of each subject are 
measured. Separate correlated latent variables for each eye can be included 
in the SEM. SEMs can also accommodate correlation between the random 
errors of different methods.

Analysis of Data from Method Comparison Studies Using R, merror, and OpenMx

  Richard A. Bilonick
University of Pittsburgh - School of Medicine, Dept. of Ophthalmology; Graduate School of Public Health, Dept. of Biostatistics

The covariance matrix, means, and standard deviations for the log-The covariance matrix, means, and standard deviations for the log-
transformed elemental carbon measurements made using thermal optical 
transmittance (TOT) and thermal optimal reflectance (TOR) by the Upper 
Ohio River Valley Project (UO) and Allegheny County Health Department 
(AC) for collocated existing (E) and archived (A) PM2.5 samples are shown 
in the table below:

Covariance UO.A.Q.TOT UO.E.Q.TOR AC.E.Q.TOT

UO.A.Q.TOT 0.2371 0.1735 0.1668

UO.E.Q.TOR 0.1735 0.1902 0.1272

AC.E.Q.TOT 0.1668 0.1272 0.4076

Mean -0.7799 -0.0093 -1.1611

SD 0.4869 0.4362 0.6384

The ncb.od (non-constant bias, original data) function from the merror 
package can be used to compute maximum likelihood estimates of the 
measurement error model parameters:
> library(merror) 
> options(width=140) 

> round(tab <- ncb.od(log(EC))$sigma.table,2)
            n sigma se.sigma alpha.cb alpha.ncb beta    df chisq.l chisq.u   lb     ub 
uo_a_q_tot 42  0.10     0.14    -0.13      0.01 1.21  0.46    0.00    3.27 0.04 176.70 
uo_e_q_tor 42  0.24     0.13     0.64      0.59 0.93 22.56   11.38   37.51 0.18   0.33 
ac_e_q_tot 42  0.53     0.25    -0.51     -0.58 0.89 40.02   24.45   59.37 0.43   0.68 
Process    42  0.39     0.19       NA        NA   NA 35.57   21.01   53.91 0.32   0.51

# Note: ncb.od constrains the product of the beta's to equal 1!

> tab$beta/tab$beta[1] # Fixing the first beta to equal 1 instead!
[1] 1.0000000 0.7628350 0.7331638        NA 

> lrt(EC)$p.value #Warning messages not shown
[1] 9.454714e-05   

> lrt(log(EC))$p.value 
[1] 0.2720464 

The lrt (likelihood ratio test) function from the merror package can be 
used to test the equality of the  estimates. The very small p-value for the 
untransformed elemental carbon measurements and the much larger p-value 
for the log-transformed measurements support the choice of transformation.

The simple measurement error model for the three measurements can beThe simple measurement error model for the three measurements can beThe simple measurement error model for the three measurements can be 
represented as a structural equation model or SEM (Figure 1). The SEM can 
be described by three matrices: 1) the A matrix describes the relations 
among the latent and observed variables, 2) the S matrix describes the error 
covariances, and 3) the F matrix “filters” the latent variable from the 
observed variables. For this model, the A, S, and F matrices are:

A=[
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with the inverse of the identity matrix minus A being:

 I− A−1=[
1 0 0 0
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3 0 0 1

] .
The resulting covariance model is then:
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and means model is:
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Using OpenMx, this SEM can be coded as:
require(OpenMx)

manifests <- names(EC)

latents <- c("mu")

ecModel <- mxModel("log EC", type="RAM",

      manifestVars = manifests,

      latentVars = latents,

      mxPath(from=latents, to=manifests,free=c(F,T,T),

        values=c(1,NA,NA),

        labels=c("beta_1","beta_2","beta_3")),

      mxPath(from=manifests, arrows=2, lbound=0,

        labels=c("sigma2_1","sigma2_2","sigma2_3")),

      mxPath(from=latents, arrows=2, lbound=0,labels="sigma2"),

      mxPath(from="one",to=c(latents,manifests),arrows=1,

        free=c(F,T,T,T),

        values=c(mean(mean(log(EC))),0,0,0),

labels=c("mubar","alpha1","alpha2","alpha3")),

      mxData(cov(log(EC)), type="cov",

            numObs=dim(EC)[1],means=mean(log(EC))),

      mxAlgebra(sqrt(diag2vec(S)),name="P"),

      mxCI(c('A','S','M'))     

)

results.ec <- mxRun(ecModel,intervals=T)

The calibration equations for elemental carbon (  g /m3 ) were:

UO.E.Q.TOR = 1.797 UO.A.Q.TOT0.763

UO.A.Q.TOT = 0.464 UO.E.Q.TOR1.311

AC.E.Q.TOT = 0.555 UO.A.Q.TOT0.733

UO.A.Q.TOT = 2.234 AC.E.Q.TOT1.364

AC.E.Q.TOT = 0.316 UO.E.Q.TOR0.961

UO.E.Q.TOR = 3.317 AC.E.Q.TOT1.040

and are plotted in Figure 2.

Figure 2: Calibration curves for elemental carbon.
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Figure 1: Path diagram for simple measurement error model represented  
as a structural equation model. Manifest (observed) variables are shown  
as squares while a circle indicates a latent (unobserved) variable - the  
"true" quantity we are attempting to measure. The triangle denotes the  
inclusion of the intercepts and latent variable mean.
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